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Abstract

Beating the play is a novel method for how to play a simultaneous move

game without conjectures about how others play the game. A strategy beats

the play if its payo§ is higher than when playing like others play the game,

regardless of how they play the game. Only Nash equilibrium strategies of the

hypothetical game in which you play against copies of yourself can beat the

play. It is possible to beat the play in numerous games. Many extensions are

presented and a close connection to evolutionary game theory is uncovered.

JEL classification number: C72.

1 Introduction

Nash equilibrium is the predominant solution concept for games and relies on the

ability of each player to perfectly predict the behavior of the other players. However,

often it is unknown what others do and there may be no common understanding

of the underlying uncertainty.1 Then we find ourselves in need of a strategy that

performs well when we do not expect that a Nash equilibrium or a Bayesian Nash

∗I would like to thank Josef Hofbauer, Bernhard Kasberger, Simon Martin, Joel Sobel, Juha

Tolvanen, Jörgen Weibull and seminar participants at University of Oxford for helpful comments.
§Department of Economics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Aus-

tria. E-mail: karl.schlag@univie.ac.at
1See also the Wilson (1987) critique that blames common knowledge for the disparity between

theory and reality.
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equilibrium will be played. We approach the problem from an extreme position and

propose a “personal” solution concept for a player who is entirely unable to predict

what others will do. Later we expand the model to incorporate some understanding

of, or conjectures about, the play of others. It is referred to as personal as we only

make a recommendation for that player, not simultaneously for all players involved.

We develop a personal solution concept for how to play a game without making

any assumptions how others play the game. In particular, there is no need to know

the objectives or preferences of any of the other players. We outline the basic con-

cept. We consider a player, who we refer to as player 0, who is about to play an n

player simultaneous move game. This player perceives the di§erent player roles as

indistinguishable. So she could be facing any given way the game is being played

from the perspective of any of the player roles. It is as if player 0 enters equally likely

into any of the n player roles. It is as if she enters the game by replacing an existing

player. With this scenario in mind, prior to the entry, consider the strategy profile

that describes which strategy each of the n players wants to choose. In this profile,

player 0 can evaluate her overall performance as an average of her performance in

the di§erent player roles. She could choose a best response to this average if she

knew the strategy profile. However, she does not know the strategy profile and the

same strategy cannot be a best response for each strategy profile unless player 0 has

a weakly dominant strategy. So we lower the goal and ask the following question. Is

there a single strategy for player 0 that is a better response for each strategy profile to

the fictitious benchmark in which she chooses the strategy of the player she replaces?

If yes, then we say that this strategy beats the play. Loosely speaking, this strategy

performs better than when playing like others.

Note that the criterion underlying beating the play arises naturally when com-

paring performance of di§erent strategies using data. Let’s measure the performance

of the strategy by considering its payo§ against random opponents drawn from the

data. Compare this to the performance of a random strategy from the data against

random opponents from the data. To beat the play means that the given strategy

does better than the random strategy in any data set.

We describe the concept of beating the play more formally. Let A be the set of pure

strategies of each of the n players and let u be the payo§ (or utility) function of player
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0. Let si denote the strategy chosen by the player that occupies the role of player

i. To play like player i generates payo§ u (si, s−i) where s−i = (si+1, .., sn, s1, ...si−1) .

It is as if players are located on a circle or that payo§s are anonymous in the sense

that they do not depend on player indices. To play like others means to obtain payo§
1
n

Pn
i=1 u (si, s−i) . To choose ξ as player i yields payo§ u (ξ, s−i) . To choose ξ when

facing the others means to obtain payo§ 1
n

Pn
i=1 u (ξ, s−i). Then strategy ξ beats the

play if 1
n

Pn
i=1 u (ξ, s−i) ≥

1
n

Pn
i=1 u (si, s−i) holds for all profiles s 2 A

n. In particular,

note that only the utility of player 0 matters, no information about that of the other

players is needed.

A first insightful result is that a strategy that beats the play has to be a symmetric

Nash equilibrium (NE) strategy in the so-called game against selves. This is the

hypothetical symmetric game in which all players have the same payo§ as you. The

intuition is as follows. If all but one player use the same strategy as you do, then

to perform better than when playing like others means to perform better than this

odd man out when all others use your strategy. This is exactly the condition that

ensures that all choosing your strategy is a NE of the game against selves. Thus, we

find that it can make sense to choose a NE strategy even if you have no conjectures

about what others will do. We also find that only pure strategies can beat the play

under generic payo§ functions.

We establish necessary and su¢cient conditions for when a symmetric NE strategy

of the game against selves beats the play when the set of actions A is a subset of

R. These build on the observation that a strategy beats the play if and only if

fξ (s) =
1
n

Pn
i=1 u (ξ, s−i) −

1
n

Pn
i=1 u (si, s−i) is minimized when s = ξn. To obtain

su¢cient conditions we split this minimization up into first showing that fξ attains

its smallest values on the diagonal, so where si = sj for i, j, and then showing that

the minimum on the diagonal is attained when s = ξn. For the first argument we

consider the minimization along the o§ diagonals where we keep the total sum of si

constant. Easy to verify su¢cient conditions are presented that involve convexity and

concavity assumptions. Necessary conditions are formulated by applying the above

minimization approach locally and lead to inequalities involving second derivatives.

Under strategic substitutes we find that one only has to check the o§ diagonals. Under

strategic complements one only has to check the diagonal. In particular, neither
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strategic complements or substitutes are necessary or su¢cient for beating the play.

We look into more detail at payo§s that only depend on own strategy and on the

sum of the strategies as in an aggregative game and present many examples. Consider

for instance Cournot competition. If own costs are convex, own demand is convex and

own profits as monopolist are concave then the Cournot output beats the play. Note

that payo§s exhibit strategic substitutes. Specifically, when there are n firms, you

face inverse demand max {1− q, 0} and have constant marginal costs c (c < 1) then

set quantity 1−c
n+1

to beat the play. Looking at data from laboratory experiments we

discover that the Cournot output as the solution to beating the play actually realizes

payo§s that are very close to those of the empirical best response. In the appendix

(Section D.2) we explain this finding. Consider instead Bertrand competition with

heterogenous goods in which own demand is convex and own costs exhibit constant

marginal costs. Here too it is possible to beat the play and note that payo§s have

strategic complements. Other examples in which one can beat the play include public

good games and contests.

We see the property of beating the play as desirable but not as necessary. The

concept itself is very demanding, not allowing to almost beat the play and requiring

the property to hold for arbitrary strategy profiles. When it is not possible to beat

the play then we o§er generalizations of the basic definition that relax these aspects.

In our first generalization we drop the requirement that own payo§must be higher

than it is when playing like the others. Instead we search for a strategy that never

falls too far below playing like the others. Let the shortcoming of a strategy measure

how far a strategy is from being able to beat the play. Specifically, the shortcoming

of a strategy is defined as the maximal amount that the payo§ from this strategy can

lie below that obtained when playing like the others. We say that a strategy comes

closest to beating the play if it attains the lowest shortcoming among all strategies. If

the lowest shortcoming is small in a given context then we say that one can almost

beat the play. We find that a strategy that comes closest to beating the play exists

under minimal assumptions (for instance, when the set of actions A is a compact

subset of R and utility u is continuous).

In some games the lowest shortcoming is small. This is for instance the case for

Bertrand competition with homogeneous goods and constant marginal costs. The
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strategy that comes closest to beating the play involves pricing above the com-

petitive price with the extra margin decreasing in the number of firms. In par-

ticular, there is no Bertrand paradox. For instance, if there are n firms and you

face linear demand max {1− p, 0} and have constant marginal costs c then set price

ξ = c + 1
2

(
1−

p
n
n+1

)
(v − c) to come closest to beating the play. Its shortcoming

is equal to (1−c)2

4n(n+1)
. Similarly, performance in first price auctions is very good. The

strategy that comes closest to beating the play prescribes to bid the fraction n
n+1

of your own value v for the good. No assumptions on values or bidding behavior

of others is made. Its shortcoming is equal to v
n(n+1)

which is arguably small when

n ≥ 5.

In other games one cannot almost beat the play as the shortcoming of any strategy

is clearly large. For instance, this is the case when the game against selves is a

coordination game. In such a case it is clear that one cannot perform well without

some understanding about what others will be doing.

We proceed by providing a few extensions where we no longer check performance

in all strategy profiles. First we adapt the definition so that a player never compares

own performance to that of strictly dominated strategies.

Then we consider the setting where players choose their strategies independently.

From the perspective of the player about to enter the game, it is as if strategies of

opponents are independently drawn from the same unknown distribution. Accord-

ingly, we say that ξ beats the independent play if u (ξ,σn−1) ≥ u (σn) holds for all

mixed strategies σ. This condition equally emerges in the context of investigating

data when ignoring correlation in play and matching strategies independently based

on the empirical distribution. This definition can be shown to be equivalent to that

of a globally neutrally stable strategy (Hofbauer & Sandholm, 2009) in the game

against selves. We build on the results in this literature to find that one can beat the

independent play in a war of attrition and in some congestion games.

In another variation we consider a hybrid model in which a player has some beliefs

about which strategy profiles she is possibly facing. The condition to beat the play

is only checked for strategy profiles (or distributions) belonging to this set U . We

then say that ξ beats the play in U. This gives nice insights in settings where some

understanding of the play of others is needed. For instance, assume that the game
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against selves is a coordination game in which each symmetric pure strategy profile

is a strict NE. Then any pure strategy beats the play whenever it is believed that

others are su¢ciently likely to use this strategy.

In the online appendix we also extend our definition to the case where player

roles are not indistinguishable. Consider for instance a game between two types of

players, such as buyers and sellers. A buyer will naturally only want to compare

own performance to that of other buyers. One option is to drop sellers from the

comparison, this is treated in Section A.1. An alternative pursued in Section A.2 is

to introduce types which selects Bayesian Nash equilibria of the game against selves.

Further extensions are provided to games where there is parametric uncertainty and

where others also try to beat the play.

In this paper we uncover a close connection to evolutionary game theory, specif-

ically to neutrally stable strategies. Under neutral stability, strategies are tested for

whether they survive when competing with others. They are not actively chosen.

Specifically, a strategy is called a neutrally stable strategy (NSS, Maynard Smith,

1982) if this strategy as incumbent does at least as well as a mutant strategy in a

single infinite population where most use the incumbent strategy and only some use

the mutant strategy. This is mathematically equivalent to our personal solution con-

cept of beating the independent play in a neighborhood of this strategy. Dropping

independence, our concept corresponds to a NSS of the symmetrized game introduced

by Selten (1980) in which player roles are randomly assigned. When considering all

strategy profiles, and not just those in a neighborhood, our concept is equivalent to

that of a globally NSS (Hofbauer & Sandholm, 2009). Most of our examples are new

to this literature. Our technique, to compute solutions through a minimization, and

to do this separately on and o§ the diagonal, is novel. Our concept sheds a new light

on neutral stability which currently is rarely used in economic applications as it is

based on random matching in an infinite population which is typically very distant

from economic environments that involve firms or workers. Despite the mathematical

connections, the underlying motivations of neutral stability and beating the play are

fundamentally di§erent. Under neutral stability, di§erent individuals are competing

according to the payo§s they obtain. Under beating the play there is only a single

individual who is comparing di§erent strategies.
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In the literature only few solution concepts for games do not postulate that other

players follow the same reasoning. Like us, some do not impose any restrictions on the

play of others. Von Neumann and Morgenstern (1944) propose the security strategy

(a maximin utility approach), it coincides with a NE strategy in a zero-sum game.

Linhart and Radner (1989) look at minimax regret in Nash bargaining. Some restric-

tions are added by Kasberger and Schlag (2020) when they derive recommendations

for bidding in first price auctions using a variant of minimax regret. Others investi-

gate the outcomes when di§erent types of reasoning are present among the players.

Renou and Schlag (2011) investigate minimax regret when opponents follow the same

reasoning with a given probability. Level k reasoning and its variants explore the

interaction among players with di§erent hierarchies of beliefs (Stahl, 1993, Camerer

et al., 2004).

The most related concepts to beating the play are maximin utility and minimax

regret (as well as any other concept for making decisions under ambiguity). As

solution concepts for decision making they can be applied by treating the game as

a decision problem. No assumptions about the payo§s in the roles of other players,

unlike indistinguishability. However, without adding some conjectures about the play

of others, maximin utility typically does not deliver sensible results (e.g., see Bertrand

competition, Footnote 2.4 in Section 3.1.2). Minimax regret aims to find strategies

that are always close to a best response to the play of others. It measures performance

relative to an ambitious benchmark that makes it hard to even guarantee mediocre

performance (for instance this is easily verified in Cournot competition2). On the

other hand, beating the play evaluates performance relative to a modest benchmark

and thus allows excellent performance in many games.

Finally, note that our replacement and comparison scenario is reminiscent of the

boundedly rational approach in (Schlag, 1998). Therein, a single player replaces a

random member of a population and learns from others to then make a choice in a

decision problem. In the scenario where only strategies but not payo§s of others are

observable then the objective therein can be formulated in terms of this player only.

Payo§s of others then play no role.

2Interestingly, we find for Cournot competition in small markets that this maximal distance is

small when computing performance in our entry scenario (see Section 2.5).
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We proceed as follows. In Section 2 we assume indistinguishable roles and explore

beating the play. Therein, we motivate beating the play (Section 2.1), introduce

the concept (Section 2.2), present some properties (Section 2.3), analyze aggregative

games (Section 2.4) and investigate Cournot competition with kinks, including a

data application (Section 2.5). Section 3 collects various extensions. In Section 3.1

we look at strategies that come closest to beating the play with an application to

Bertrand competition (with a data application). In Section 3.2 we accommodate for

the case where others use a strictly dominated strategy with an application to first

price auctions. Then we limit the ways in which the game is being played, looking

at independent play in Section 3.3 and play in a neighborhood in Section 3.4. In

Section 4 we conclude. In the online appendix we expand our basic model in various

directions. In Section A we show how to make recommendations when player roles

are not indistinguishable. In Section A.1 the comparison is only to others that are

indistinguishable from you. In Section A.2 we introduce types. In Section B we allow

for parametric uncertainty, in Section C we consider multiple players simultaneously

attempting to beat the play. In Section D we present two alternative definitions.

2 Beating the Play

Before we introduce our model in detail we provide a brief informal introduction to

our personal solution concept, motivating it from the perspective of the reader.

2.1 Informal Motivation

Suppose you are about to play an n player simultaneous move game and need a recom-

mendation for how to play this game. We present a novel methodology that does not

require you to make any conjectures about what others do. Two key features define

our innovation. The first identifies a new way to describe the strategic environment,

the second introduces a new way to capture playing like others.

Assume that you cannot distinguish the di§erent player roles. Later we will relax

this condition. For a given way the game is being played you imagine you could equally

likely have faced this situation from the perspective of one of the other players. But
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if you think about being in the role of someone else then your seat becomes vacant

and you cannot compute your payo§s when occupying a di§erent role. We fill your

seat with a strategy, it is as if each player has a strategy. Now you can analyze how

your strategy performs from the perspective of each of the player roles. As you can

imagine that you face the game from the perspective of each player role equally likely,

it is as if you enter the game by randomly replacing one of the players. In fact, this

is the first key to this paper. Instead of describing the environment you face as what

strategies the (n− 1) other players choose we describe the environment you face as a

profile of n strategies, one for each player.

The next step in the standard approach is to form beliefs about the environment

and to best respond to these. We consider an alternative approach in which we

aim to perform well in all environments. In particular we will design a benchmark

and attempt to outperform this benchmark in each environment. The benchmark

we introduce is the payo§ you would achieve if you could choose the strategy of the

player you replace. This is a purely hypothetical alternative. However it generates a

good measure for the value of the strategies currently used. This is the second key of

this paper, to define a benchmark that describes playing like others. Our objective

is then to recommend a single strategy that performs better than when playing like

others. So this approach applies if you do not want to rule out anything about how

others play (in Section 3.4 we look at restricted play of others).

We provide some more motivating details by looking more specifically at a two

player game. Let A be the set of pure strategies for each player and let u be your

utility function. Assume that you are assigned to the role of player 1 and that it

turns out that the other player, player 2, plays a2 2 A. To play like player 1 means

to play like the opponent of player 2. For you there is no di§erence between the roles

of player 1 and player 2. In particular, you could have also found yourself in the role

of player 2. Lets say that when you are in the role of player 2 then the other player,

player 1, plays a1 2 A. So to play like player 1 means to choose a1 and to face a2 and

to get payo§ u (a1, a2) . To play like player 2 means to choose a2 and to face a1 and

to get payo§ u (a2, a1) . As the two player roles are indistinguishable, it is as if you

find yourself equally likely in the role of player 1 and of player 2. So to play in this

constellation like the player whose role you adapt means to get an expected payo§
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of 1
2
u (a1, a2) +

1
2
u (a2, a1) . This is the benchmark or counterfactual payo§ to which

we compare the expected payo§ of the strategy we recommend. It is hypothetical as

there is no formal entry or replacement taking place. In particular, this counterfactual

payo§ cannot be computed using observed data in a game in which you are taking

part. It can be only computed if one uses data to evaluate expost how you would

have performed in a game in which you did not take part in.

Now consider your performance if you choose the strategy ξ. When entering

into role of player 1 you get u (ξ, a2) , when in the role of player 2 then you get

u (ξ, a1) . So your expected payo§ of choosing ξ in this constellation is given by
1
2
u (ξ, a2) +

1
2
u (ξ, a1) . To perform better or better respond to the player whose role

you adapt means in the above constellation that 1
2
u (ξ, a2)+

1
2
u (ξ, a1) ≥ 1

2
u (a1, a2)+

1
2
u (a2, a1) . To better respond regardless of how the game is played by others means

that 1
2
u (ξ, s2)+

1
2
u (ξ, s1) ≥ 1

2
u (s1, s2)+

1
2
u (s2, s1) holds for all s 2 A2. If this is true

we say that ξ beats the play and informally say that ξ performs better than when

playing like others. Our recommendation to you is to choose a strategy that beats

the play, provided such a strategy exists.

Three conditions are needed in order to apply this concept to a game. They

are jointly motivated by the assumption that player 0 cannot distinguish the di§erent

player roles. Informally we identify these three conditions as player 0 regarding player

roles as indistinguishable. First of all, the game has to be such that each player has

the same set of pure strategies. If not, player roles could be told apart. Second of

all, there needs to be a common method for how player 0 computes payo§s that can

be applied to each player role. We call this weak symmetry. For example, it can be

as if player 0 perceives players as located on a circle where the payo§ in a player

role is calculated with respect to the relative player positions of the others. Weak

symmetry is needed to be able to claim that player 0 can see herself in any of the

player positions. Third of all, when evaluating the performance of player 0 in a given

environment as defined by a strategy profile, the di§erent player roles are given equal

weight. The equal weighting comes from the fact that no player role can receive a

larger weight as otherwise it would be di§erent from the rest.
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2.2 The Definition

Let !B be the set of all distributions that have support in a set B. Let " be a normal

form game with the following ingredients. There are n players. Each player has the

same set of pure strategies, denoted by A. Letters i and j will be reserved for the

player indices, so i, j 2 {1, .., n} . Greek letter ξ (xsi) is reserved for our personal

solution concept which is an element of !A. For a 2 A let an 2 An be such that

(an)i = a for all i 2 {1, .., n} . Let s 2 A
n be a typical profile of pure strategies where

si is the pure strategy of player i. We also allow players to independently choose

mixed strategies, a typical profile of mixed strategies is denoted by σ 2 (!A)n . All

examples in this paper are simultaneous move games, however the concepts apply

equally to the normal form of any sequential game. Games in which di§erent players

have di§erent action sets will be considered later.

We will not define payo§s of any of the players in this game. Throughout we will

only be concerned with the payo§s of a player, who we refer to as player 0, who is

going to play this game in one of the player roles. This means that any description

of the characteristics of a game always refers only to how the game looks from the

perspective of player 0. To simplify exposition, we will not mention each time that

assumptions on payo§s in the game only refer to those of player 0. For example, if

we write that demand is convex then we mean that the demand that player 0 faces

is convex.

For i 2 {1, ..., n} let u(i) (s) be the payo§ of player 0 when she is in the role of

player i and the strategy profile is given by s, so player 0 is choosing si and player j

is choosing sj for j 2 {1, ..., n} \ {i}. We assume that it is possible to translate how

player 0 experiences the game in the role of player i into an equivalent experience

when she has in the role of player 1. We adapt the term from Plan (2017).

Definition 1 Player 0 regards player roles as weakly symmetric if for each i 2

{2, ..., n} that there exists a permutation πi of {1, ..., n} with πi (1) = i such that

u(i) (s) = u(1)
(
si, sπi(2)..., sπi(n)

)
.

Unless mentioned otherwise we assume throughout that player 0 regards player

roles as weakly symmetric. This does not necessarily mean that other players also
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regard player roles as weakly symmetric as we make no assumptions on payo§s of

others. We slightly abuse notation to simplify exposition and set u ≡ u(1) and

s−i (s) =
(
sπi(2)..., sπi(n)

)
. We then write u (si, s−i) instead of u(1)

(
si, sπi(2)..., sπi(n)

)
.

Roles are weakly symmetric when players are located on a circle and payo§s are

determined by how strategies are distributed around oneself. In that case s−i =

(si+1, ..., sn, s1, ..., si−1) .

In the most common applications payo§s are anonymous in the sense that payo§s

only depend on the own strategy and on those used by others, not on which of the

others uses which strategy.

Definition 2 Player 0 regards player roles as (strategically) anonymous if u(i) (s) =

u(i)
(
sπ(1), sπ(2)..., sπ(n)

)
holds for any permutation π of {1, ..., n} with π (i) = i for

each i 2 {1, ..., n} .

Clearly, anonymity is stronger than weak symmetry. Both concepts coincide when

n = 2.

As we can map payo§s in any role to payo§s that would be obtained in the role

of player 1 we can define dominance independent of the player role. Accordingly, the

strategy a 2 A is strictly dominated if there exists x 2 !A such that u (x, s−1) >

u (a, s−1) for all s 2 An. On the other hand, x 2 !A is a weakly dominant strategy if

u (x, s−1) ≥ u (si, s−i) for all s 2 An.

Let "0 be the hypothetical normal form game in which each player chooses a pure

strategy from A and where player i has utility ui (s) = u (si, s−i) , i = 1, ..., n. We

refer to "0 as the game against selves. We call a 2 !A a symmetric NE strategy of

"0 if an = (a, ..., a) is a NE of "0.3

We assume that player 0 describes the environment she faces by a strategy profile

s 2 An and evaluates her use of the strategy x 2 !A in this environment by the

expected payo§ she achieves when randomly assigned (with equal probability) a player

role i and facing s−i. Formally, this payo§ is given by 1
n

Pn
i=1 u (x, s−i) . Our concept

3As player roles are assumed indistinguishable, it makes sense to refer to !0 as a symmetric

game. This is consistent with the literature when n = 2. However there are di§erent definitions of

symmetry in the literature when n ≥ 3. Following Plan (2017), !0 is weakly symmetric if n ≥ 3 and

a totally symmetric if player roles are also anonymous.
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is based on comparing this payo§ to the expected payo§ she would hypothetically

achieve if she could choose the strategy si of the player she replaces, as identified by
1
n

Pn
i=1 u (si, s−i). This leads us to the central concept of this paper.

Definition 3 ξ 2 !A beats the play if

fξ (s) :=
1

n

nX

i=1

(u (ξ, s−i)− u (si, s−i)) ≥ 0 holds for all s 2 An.

Performance is measured by considering a given strategy profile from the perspec-

tive of each player and averaging over the di§erent roles. It is as if player 0 replaces

equally likely one of the existing players and evaluates her strategy from the per-

spective of the player she replaced. An interpretation in terms of doing better than

the average payo§ when all players have identical preferences is misleading. For one

thing, it is unrealistic to assume that players have identical preferences. Assuming

nevertheless identical preferences opens the door for eliminating strategy profiles as

plausible which is not possible when payo§s of others are not known. Our focus is on

the setting where the payo§s of others are not known (or ignored), which consequently

leads to a definition that only concerns the payo§s of the player of interest.

Remark 1 Note that Definition 3 would not have changed if we had included beliefs

over di§erent profiles and demanded that
R
fξ (s) dG (s) ≥ 0 holds for all distributions

G over An.

Endowed with a strategy ξ that beats the play one does not have to worry about

how the game is being played. The performance of ξ is guaranteed by the mathematics

and does not require an evaluation based on experience. However, one might never

the less wish to calculate fξ (s) given some data. We comment. For a player who is

actually playing the game, say as player 1, the entire profile s is never observable.

The value of s1 is only a thought construct used to evaluate performance when in the

shoes of others. One could however compute fξ (s) as a function of s1. For an expost

analysis based on a given data set to which the player of interest did not contribute,

the distribution of profiles is observable, which makes fξ (s) computable.

The following connection to evolutionary game theory is noteworthy. It will be

used to provide some independent insights to those working on evolutionary game
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theory but is not useful to derive or understand any of our main arguments. Hence

we only briefly mention this connection. Accordingly, ξ beats the play if and only if

ξn is a globally neutrally stable strategy in the symmetrized game of the game against

selves. So first one considers the game against selves in which all players have payo§

u. Then one symmetrizes this game (as in Selten, 1980) by randomly allocating each

player to a role in this game. Finally one computes a globally neutrally stable strategy

(Hofbauer & Sandholm, 2009) of this symmetrized game.

In the next sections we will investigate beating the play in games. We hasten

to point out that this concept is restrictive in at least three di§erent dimensions.

There is no tolerance for performing slightly worse than when playing like others.

There is no room for asymmetries as all player roles are indistinguishable. There are

no beliefs as the condition is required for all strategy profiles. Later we relax the

definition to address these di§erent aspects. In the appendix we briefly discuss an

alternative definition in which the objective is to beat the worst strategy being played

(see Section D.1). In the appendix we also present a methodology for calculating the

magnitude by which a strategy beats the play (see Section D.2).

2.3 Understanding the Concept

Clearly, strategies that beat the play need not exist. An example is the pure coor-

dination context which is explicitly analyzed in Section 3.4. It is more astonishing

that the concept exists in so many games as shown in Section 2.4. However, before

getting to these examples we present some general findings.

We relate our concept to rationality and NE.

Proposition 1 Assume that ξ beats the play. Then ξ is a symmetric NE strategy of

"0, in particular, ξ is not strictly dominated.

Proof. Assume that u
(
z, ξn−1

)
> u (ξn) for some z 2 A. Then

fξ
(
z, ξn−1

)
=
1

n

(
u (ξn)− u

(
z, ξn−1

))
< 0

and hence, following Remark 1, ξ does not beat the play.

14



In the context of part (i) above we hasten to point out the following. The defining

properties of a strategy that beats the play does not involve that others use this

strategy. This stands in contrast to the definition of a symmetric NE strategy that

is only applicable as a prediction when all others use this strategy. In Section C we

extend our concept to the case where it is known that others are also attempting to

beat the play.

The connection to NE comes at no surprise to a reader who is familiar with

evolutionary game theory. Recall from above that a strategy that beats the play is

associated to a neutrally stable strategy of a symmetrized game. As neutrally stable

strategies are NE strategies the result follows. Our next result can similarly connected

to this literature. Bhaskar (1995) shows for two player games that neutrally stable

strategies of the symmetrized game are generically pure strategies. We present a

di§erent proof for n ≥ 2 players. Our proof nicely reveals the particular type of

genericity under which only pure strategies can beat the play.

Proposition 2 Let A be finite. Let player roles be anonymous and let ξ be a symmet-

ric NE strategy of the game against selves. If u
(
ξk, an−k

)
6= u (ξn) for some a 2 C (ξ)

and k 2 {1, ..., n− 1} and ξ beats the play then ξ is a pure strategy.

Proof. Assume that ξ beats the play and that ξ is not a pure strategy. Con-

sider a 2 C (ξ). So a 6= ξ. Let µ 2 (0, ξ (a)) and b 2 !A be such that ξ =

(1− µ) [b] + µ [a] . Consider the game "̄ with action set {a, b} and payo§ function

ū (s) = u (((1− µ) [ξ] + µ [si])
n
i=1) for s 2 {a, b}

n . Note that ξ beats the play in "̄

under ū.

As ξ beats the play, ū (ξ, an−1) ≥ ū (a, an−1) and hence ū (b, an−1) ≥ ū (a, an−1) .

Assume ū
(
b, bk−1, an−k

)
> ū

(
a, bk−1, an−k

)
for some k 2 {1, .., n− 2} . So ū

(
b, bk−1, an−k

)
>

ū
(
ξ, bk−1, an−k

)
. Let us show that ū

(
b, bk, an−k−1

)
> ū

(
a, bk, an−k−1

)
. Adding a su-

perscript to f to identify the context we obtain

nf
{a,b},ū
ξ

(
bk, an−k

)
= k

(
ū
(
ξ, bk−1, an−k

)
− ū

(
b, bk−1, an−k

))

+(n− k)
(
ū
(
ξ, bk, an−k−1

)
− ū

(
a, bk, an−k−1

))
.

Above we showed that the first term is strictly negative. As ξ beats the play in

"̄ under ū it follows that ū
(
ξ, bk, an−k−1

)
> ū

(
a, bk, an−k−1

)
. This means that
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ū
(
b, bk, an−k−1

)
> ū

(
a, bk, an−k−1

)
which shows our claim. Repeating this argu-

ment shows that ū (b, bn−1) > ū (a, bn−1) . This then implies ū (b, bn−1) > ū (ξ, bn−1)

which is a contradiction to ξ beating the play. Consequently we have shown that

ū
(
b, bk−1, an−k

)
= ū

(
a, bk−1, an−k

)
holds for all k 2 {1, .., n} . In particular, ū (ξ, an−1) =

ū (ξn) = u (ξn) .

So we have shown that ū (ξ, an−1) = u
(
ξ, ((1− µ) [ξ] + µ [a])n−1

)
= u (ξn) holds

for all µ 2 (0, ξ (a)). Using the identity theorem for polynomials we obtain u
(
ξn−k, ak

)
=

u (ξn) for 1 ≤ k ≤ n − 1. This is a contradiction to the genericity assumption and

hence completes the proof.

We provide an example of a game in which a mixing is required in order to beat

the play. Consider payo§s in the game against selves as in the Rock-Scissor-Paper

game with w = l (see Example 2.3 in Hofbauer & Sandholm, 2009).4 To beat the

play in this game requires to mix with equal weight between the three pure strategies.

This follows from the observation that a symmetric NE strategy of the game against

selves beats the play if n = 2 and u (a, a0) + u (a0, a) = 0 holds for all a, a0 2 A.5

Next we compile useful su¢cient conditions for a pure strategy to beat the play.

We use the fact that ξ beats the play if and only if ξn minimizes fξ (s) over all

s 2 An. The idea is to verify this condition in two steps. First we show that fξ

attains its minimum on the diagonal {s 2 An : si = sj for all i 6= j}. Then we show

that fξ is lowest on the diagonal at ξ. When we consider whether the minimum is on

the diagonal we move in a direction that keeps the sum of the strategies constant.

Under appropriate convexity conditions one does not have to additionally verify that

the minimum is on the diagonal as this follows from anonymity. Similarly, convexity

on the diagonal together with ξ being a symmetric NE strategy of "0 is su¢cient to

show that the minimum is attained at ξn.

4A = {R,S, P}, u (a, a) = 0 for a 2 A, u (a, a0) = w if (a, a0) 2 {(R,S) , (S, P ) , (P,R)} and

u (a, a0) = l otherwise.
5We verify

1

2
(u (!, a) + u (!, b)− u (a, b)− u (b, a)) =

1

2
(u (!, a) + u (!, b)) = −

1

2
(u (a, !) + u (b, !)) ≥ −u (!, !) = 0
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Proposition 3 Assume A ⊆ R and A is convex.

(i) ξ beats the play if

u
(
ξ, an−1

)
≥ u (an) for all a 2 A, and (1)

fξ (s) ≥ fξ

  
1

n

nX

i=1

si

!n!
for all s 2 An. (2)

(ii) Assume that player roles are anonymous. Then ξ 2 A beats the play if ξ is a

symmetric NE strategy of "0, u is di§erentiable at ξn,

u
(
ξ, an−1

)
− u (an) is convex in a for all a 2 A, and (3)

fξ (s+ λ (ei − ej)) is convex in λ in a neighborhood of λ = 0 for all s 2 An.6(4)

If fξ is twice di§erentiable then (4) is equivalent to

@2

(@si)
2fξ (s)− 2

@

@si

@

@sj
fξ (s) +

@2

(@sj)
2fξ (s) ≥ 0 for all s 2 A

n. (5)

Note that a su¢cient condition for (3) is that u (ξ, an−1) is convex in a and u (an)

is concave in a.7

Proof. Part (i). (2) implies that fξ attains its minimum on the diagonal. (1)

implies that the minimum on the diagonal is attained at ξn.

Part (ii). We apply part (i).

We first show that the minimum of fξ on the diagonal is attained at ξ
n. Let

g (a) = fξ (a
n) . So we aim to show that g (a) ≥ g (ξ) for all a 2 A. To prove this

claim, note that g (a) = u (ξ, an−1)−u (an). Following (3), g is convex in a. Moreover,

g0 (ξ) = − @
@s1
u (s) |s=ξn as ui is di§erentiable at ξn. Assume that ξ belongs to the

interior of A. Then as ξ is a symmetric NE strategy of "0 and u is di§erentiable at

ξn, @
@s1
u (s) |s=ξn = 0. Hence, g0 (ξ) = 0. Together with the convexity of g the claim

follows. Assume now that ξ is at the left boundary of A. Then @
@si
ui (ξ

n) ≤ 0 and

hence g0 (ξ) ≥ 0. Together with the convexity of g this proves our claim. Similarly

the statement follows when ξ is on the right boundary of A.

We now show that fξ attains its minimum on the diagonal. Fix s 2 An. Consider

i 6= j with si 6= sj. Let g (x) = fξ (s+ x (ei − ej)) for x 2M = {x : s+ x (ei − ej) 2 An} .

Note that M is convex and contains sj−si
2
in its interior. (4) implies that g is convex.

7Note that if u is twice di§erentiable then d
da

d
dau

(
!, an−1

)
= (n− 1)2 @

@s2
@
@s2
u
(
!, an−1

)
.
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Note that
(
s+

sj−si
2
(ei − ej)

)
i
=
(
s+

sj−si
2
(ei − ej)

)
j
. Symmetry of u implies that

g
( sj−si

2
+ "
)
= g

( sj−si
2
− "
)
when

{ sj−si
2
+ ",

sj−si
2
− "
}
⊂M. Consequently, g attains

its minimum at sj−si
2
. As equalization of the i-th and j-th component in s strictly

reduces the variance of s it follows that fξ attains its minimum on the diagonal.

Finally, (5) is easily verified.

Finally, we present necessary conditions for a pure strategy to beat the play. These

are derived when moving on and o§ the diagonal at ξn, yielding local versions of (3)

and (4). First note that the first and second order necessary conditions for ξ to be a

symmetric NE strategy of "0 are @
@s1
u (ξn) = 0 and @2

(@s1)
2u (ξ

n) ≤ 0.

Proposition 4 Assume that A is a convex subset of R and player roles are anony-

mous. If ξ 2 int (A) beats the play and u is twice continuously di§erentiable in a

neighborhood of ξn then

@2

(@s1)
2u (ξ

n) ≤ 2
@

@s1

@

@s2
u (ξn) ≤ −

1

n− 1
@2

(@s1)
2u (ξ

n) .

Here is some intuition, the formal proof is below. Beating the play refers to

di§erences. It is as if one starts with profile s near ξn and one player deviates to

ξ. Marginally this di§erence is equal to 0 due to first order condition for ξn to be a

NE. Close to ξn we will be changing these di§erences marginally, hence the necessary

condition refers to second derivatives.

Consider a change on the diagonal where current play moves from ξn to xn with

x > ξ. The direct e§ect is driven by the player you are replacing choosing a higher

strategy, which is as if you are choosing a lower strategy. The marginal di§erence

is − @
@s1
u (xn) , the marginal change equals − @

@s1
@
@s1
u (xn). This is positive at ξn by

the second order condition associated to ξn being a NE. The indirect e§ect is driven

by change in behavior of the others. Here cross derivatives matter. Under strategic

substitutes (where − @
@s1

@
@s2
u (ξn) ≥ 0) the increase in their strategy increases your

performance di§erence. Under strategic complements (where − @
@s1

@
@s2
u (ξn) ≤ 0) the

di§erence is decreased and needs to be watched. The magnitude of the decrease is
@
@s1

@
@s2
u (ξn) . This countervailing e§ect has to be multiplied by (n− 1) as it is driven

separately by each of the opponents and has to be doubled as it comes with a change

both in your performance as well as in that of the benchmark of playing like others.
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So the positive e§ect driven by concavity in own strategy has to be stronger than

2 (n− 1) times the negative e§ect driven by strategic complements. This leads to the

necessary inequalities

−
@2

(@s1)
2u (ξ

n) ≥ 2 (n− 1)
@

@s1

@

@s2
u (ξn) .

Now consider a change on the o§ diagonal. Starting at ξn, assume that player j

moves to ξ+ ", player k 6= j moves to ξ− " and the rest remain at ξ. Say you replace

player j. Again, the direct e§ect on the di§erence, driven by the di§erent behavior

of you and the player who you replace, is given by − @2

(@s1)
2u (ξ

n) ≥ 0. The indirect

e§ect is driven by player k changing her strategy in the opposite direction, moving

to ξ − ". This means that the performance di§erence is increased under strategic

complements and decreased on strategic substitutes. As on the diagonal, the change

has to be doubled. Consequently, concavity in own strategy has to be stronger than

twice the negative e§ect driven by strategic substitutes. This leads to the necessary

inequalities

−
@2

(@s1)
2u (ξ

n) ≥ −2
@

@s1

@

@s2
u (ξn) .

In short, on the diagonal the forces go in opposite direction which might pose a prob-

lem under strategic complements. On the o§ diagonal the opposite happens, forces

go in the same direction which might cause a problem under strategic substitutes.

Consequently, for strategic complements (so d
ds1

d
dsj
u ≥ 0) we only have to check the

diagonal, while for strategic substitutes (so d
ds1

d
dsj
u ≤ 0) we only have to check the o§

diagonal. In particular, neither strategic complements nor strategic substitutes are

necessary for beating the play.

Proof. We prove the first inequality that refers to the o§ diagonal by looking

at changes in two entries of ξn that keep the sum of strategies constant. Fix j, k 2

{1, ..., n} with j 6= k. Let hi (s) = u (ξ, s−i) − u (si, s−i) , gi (x) = hi (ξ + x (ek − ej))

and g (x) = nfξ (ξ + x (ek − ej)) =
Pn

i=1 gi (x) for x in a neighborhood of 0 and

s 2 An. As ξ beats the play, x = 0 is a minimum of g so we need g00 (0) ≥ 0.

We compute g00 (0) . Note that g00i (0) = 0 if i /2 {j, k}. For i 2 {j, k} we have

g0i (0) =
@

@sk
hi (ξ

n)−
@

@sj
hi (ξ

n) ,

g00i (0) =
@

@sk

@

@sk
hi (ξ

n) +
@

@sj

@

@sj
hi (ξ

n)− 2
@

@sj

@

@sk
hi (ξ

n) .
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where

@

@sj
hj (s) = −

@

@sj
u (sj, s−j) ,

@

@sj

@

@sj
hj (s) = −

@

@sj

@

@sj
u (sj, s−j) ,

@

@sj

@

@sk
hj (s) = −

@

@sj

@

@sk
u (sj, s−j) ,

@

@sk
hj (s) =

@

@sk
u (ξ, s−j)−

@

@sk
u (sj, s−j) ,

@

@sk

@

@sk
hj (s) =

@

@sk

@

@sk
u (ξ, s−j)−

@

@sk

@

@sk
u (sj, s−j) .

So g00 (0) = g00j (0) + g
00
k (0) where

g00j (0) = −
@

@sj

@

@sj
uj (ξ

n) + 2
@

@sj

@

@sk
uj (ξ

n) ,

and hence g00 (0) ≥ 0 implies

−
@

@si

@

@si
ui (ξ

n) + 2
@

@si

@

@sj
ui (ξ

n) ≥ 0 for j 6= i.

We prove the second inequality that refers to the diagonal by looking at changes

near ξ on the diagonal. Let g (x) = fξ (xn) = u (ξ, xn−1)− u (xn) for x 2 A. Then we

need g00 (ξ) ≥ 0. We find

g0 (x) = −
@

@s1
u (xn) +

X

j 6=1

(
@

@sj
u
(
ξ, xn−1

)
−

@

@sj
u (xn)

)
,

g00 (ξ) = −
X

k

@

@sk

@

@s1
u (ξn) +

X

j 6=1

@

@s1

(
−
@

@sj
u (ξn)

)

= −
@

@s1

@

@s1
u (ξn)− 2 (n− 1)

@

@s1

@

@s2
u (ξn) ,

and hence g00 (0) ≥ 0 implies

−
@

@s1

@

@s1
u (ξn)− 2 (n− 1)

@

@s1

@

@s2
u (ξn) ≥ 0.

2.4 Di§erentiable Aggregative Payo§s

Consider now games in which player roles are anonymous and payo§s of player 0 are

as in an aggregative game (Acemoglu & Jensen, 2013). Assume additionally that
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player roles are anonymous and payo§s are twice di§erentiable. So A is a convex

subset of R and there is some twice di§erentiable function F : R2 ! R such that

u (s) = F

 
s1,

nX

j=1

b (sj)

!

where b is strictly increasing.

Note that there is an equivalent representation in which the sum does not depend

on j = 1, so u (s) = F0
(
s1,
Pn

j=2 b (sj)
)
for some F0. As b is invertible we can interpret

b (a) instead of a as the action. This leads to the equivalent representation we will be

using in which

u (s) = U (s1,# (s))

for some U where U is twice di§erentiable and # (s) =
Pn

j=1 sj.

Note that strategies are strategic complements if U12 (x, y) + U22 (x, y) ≥ 0, and

strategic substitutes if U12 (x, y) + U22 (x, y) ≤ 0 for all x, y, where Ukl (x1, x2) =
@
@xk

@
@xl
U (x1, x2) .

8

The necessary conditions for ξ to be a symmetric NE strategy of "0 are that

U1 (ξ, nξ)+U2 (ξ, nξ) = 0 and U11 (ξ, nξ)+2U12 (ξ, nξ)+U22 (ξ, nξ) ≤ 0.The necessary

conditions presented in Proposition 4 for ξ 2 A to beat the play turn into

U11 (ξ, nξ) ≤ U22 (ξ, nξ) , and (6)

U12 (ξ, nξ) + U22 (ξ, nξ) ≤
1

2n
(U22 (ξ, nξ)− U11 (ξ, nξ)) .

The first inequality refers to conditions derived on the o§ diagonal, the second to

those derived on the diagonal.

We use Proposition 3 to derive su¢cient conditions for a pure strategy to beat

the play.

Proposition 5 Let ξ 2 A be a symmetric NE strategy of "0. Then ξ beats the play

if

(n− 1)2 U22 (ξ, ξ + (n− 1) x) ≥
d

dx

d

dx
U (x, nx) , (7)

U22 (ξ, ξ + # (s−1)) ≥ U11 (s1,# (s)) . (8)

8More precisely, player 0 perceives the strategies like this. However, following the general state-

ment at the beginning of Section 2.2 we refrain from mentioning that this is actually only about

player 0.
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(7) and (8) hold if U (x, y) is concave in x, U (ξ, y) is convex in y and U (x, nx) is

concave in x.9

Proof. We apply Proposition 3 (ii). Let

h (x) = U (ξ, ξ + (n− 1) x)− U (x, nx) .

Then (7) implies that h is convex and hence that (3) holds.

We now verify (4). Let

hi (s) := u (ξ, s−i)− u (si, s−i) = U (ξ, ξ + # (s−i))− U (si,# (s)) .

Then fξ (s) = 1
n

Pn
j=1 hj (s) . We compute

d

dsi
hi (s) = −U1 (si,# (s))− U2 (si,# (s)) ,

d

dsi

d

dsi
hi (s) = −U11 (si,# (s))− 2U12 (si,# (s))− U22 (si,# (s)) ,

d

dsi

d

dsj
hi (s) = −U12 (si,# (s))− U22 (si,# (s)) ,

d

dsj
hi (s) = U2 (ξ, ξ + # (s−i))− U2 (si,# (s)) ,

d

dsj

d

dsk
hi (s) = U22 (ξ, ξ + # (s−i))− U22 (si,# (s)) for i /2 {j, k} .

Then

d

dsi

d

dsi
hi (s)− 2

d

dsi

d

dsj
hi (s) +

d

dsj

d

dsj
hi (s)

= −U11 (si,# (s))− 2U12 (si,# (s))− U22 (si,# (s))

+2U12 (si,# (s)) + 2U22 (si,# (s))

+U22 (ξ, ξ + # (s−i))− U22 (si,# (s))

= −U11 (si,# (s)) + U22 (ξ, ξ + # (s−i)) ,

and
d

dsi

d

dsi
hk (s)− 2

d

dsi

d

dsj
hk (s) +

d

dsj

d

dsj
hk (s) = 0 for k /2 {i, j} .

So

d

dsi

d

dsi
fξ (s)− 2

d

dsi

d

dsj
fξ (s) +

d

dsj

d

dsj
fξ (s)

=
1

n
(−U11 (si,# (s)) + U22 (ξ, ξ + # (s−i))− U11 (sj,# (s)) + U22 (ξ, ξ + # (s−j)))

9Note that d
dx

d
dxU (x, nx) = U11 (x, nx) + 2nU12 (x, nx) + n

2U22 (x, nx) .
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which completes the proof.

We look at some special cases and provide prominent examples for each, thereby

uncovering many popular games in which one can beat the play.

Assume first that U is additively separable, so U (x, y) = g (y) − c (x) for some

functions c and g. Strategies are strategic complements if g is strictly convex as U12+

U22 = g
00. Necessary conditions (Proposition 4) for beating the play are that c00 (ξ) +

g00 (nξ) ≥ 0 and g00 (nξ) ≤ 1
2n
(c00 (ξ) + g00 (nξ)) . Su¢cient conditions (Proposition 5)

are that c and g are convex and n2g00 (nx) ≤ c00 (x) for all x 2 A. So with convex c it

is possible to beat the play if goods are strategic complements. A prominent example

is a model of private contribution to public goods. Strategies define the contribution,

so A ⊆ R+. g (y) defines the value of a public good with aggregate contribution y.

c (x) is the cost of contributing x.

Now assume that U (x, y) = xg (y) − c (x). Necessary conditions for beating

the play are c00 (ξ) + xg00 (nξ) ≥ 0 and g0 (nξ) + ξg00 (nξ) ≤ 1
2n
(c00 (ξ) + ξg00 (nξ)) .

As comparison, following Hahn (1962) and Seade (1979), ξn is locally stable (with

a continuous time adoption process) if c00 (ξ) > g0 (nξ) and g0 (nξ) + ξg00 (nξ) <
1
n
(c00 (ξ)− g0 (nξ)) .

The su¢cient conditions for beating the play given in Proposition 5 are that c and

g are convex and yg (y) is concave on R+, so 2g0 (y) + yg00 (y) ≤ 0 for all y ≥ 0. In

particular this means that g0 ≤ 0. So it is possible to beat the play if c and g are convex

functions and goods are strategic substitutes (the latter requires g0 (y)+ yg00 (y) ≤ 0).

Models of contests and fighting (Acemoglu & Jensen, 2013, ch. 5.2) fall in this

class. A prominent example is due to Tullock (1980). After transforming the strategic

variable, let g (y) = V y−1 with V > 0 and c (x) = xα with α ≥ 1. Here we set

A = [",1) for some small " > 0 to ensure di§erentiability. Cournot competition

with homogeneous goods also falls in this class, as long as demand has no kinks.

Strategies are quantities, g captures inverse demand, so g ≥ 0. c once again captures

costs. Su¢cient conditions translate into costs being convex, inverse demand being

convex and monopoly revenue being concave. For instance, linear inverse demand

g (y) = max {0, 1− y} is a candidate. However, in order to ensure that g is twice

di§erentiable on the relevant domain we need that A ⊆
[
0, 1

n

]
. The restriction si ≤ 1

n
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can be justified when c is increasing and 1
n
− c
(
1
n

)
≤ −c (0) as in this case quantities

strictly greater than 1
n
are strictly dominated. For Cournot competition with kinks

in the relevant domain see Section 2.5.

Consider now the slightly more general model in which U (x, y) = xg ((1− γ) x+ γy)−

c (x, y) with − 1
n−1 ≤ γ < 0 or 0 < γ < 1.

Assume first that 0 < γ < 1. Su¢cient conditions are that g is convex, xg (x) is

concave and both c (x, y) and c (x, nx) are convex in x. This follows when verifying

the following two statements. First of all, xg ((1− γ) x+ γnx) is concave in x if and

only if for any x 2 A,

2 (1 + γ (n− 1)) g0 ((1− γ) x+ γnx) + x (1 + γ (n− 1))2 g00 ((1− γ) x+ γnx) ≤ 0.

(9)

This holds if xg (x) is concave in x as γ > 0. Second of all, xg ((1− γ) x+ γy) is

concave in x for each y if

2 (1− γ) g0 ((1− γ) x+ γy) + (1− γ)2 xg00 ((1− γ) x+ γy) ≤ 0 for all x, y 2 A (10)

which holds if xg (x) is concave in x as γ > 0. Cournot competition with heterogenous

goods falls within this class where g is the inverse demand function and c (x, y) is the

cost function that only depends on x. Given the above, su¢cient conditions are that

costs are convex and demand is convex with monopoly profits being concave.

Now consider the case where − 1
n−1 ≤ γ < 0. Su¢cient conditions are that g is

convex, (10) holds and both c (x, y) and c (x, nx) are convex in x. This is because

(10) implies (9) when γ < 0. Note that there are strategic complements if

γg0 ((1− γ) x+ γy) + γxg00 ((1− γ) x+ γy) ≥ 0,

a condition that implies (10) under these restrictions on γ. Bertrand competition

with heterogeneous goods and constant marginal costs takes this form (with g ≥ 0)

when considering markups as the strategic variable letting costs c (x, y) be a func-

tion of ((1− γ) x+ γy) . Hotelling’s (1929) model of spatial competition fits in this

specification, setting γ = −1 and n = 2.

Finally, note that the model of price competition with di§erentiated products of

Nocke and Schutz (2018) is an aggregative game in which U (x, y) = g(x)
v+y
. Su¢cient

conditions for beating the play are that g (x) and g(x)
v+nx

are concave in x.
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2.5 Cournot Competition with Kinks

2.5.1 The Analysis

Recall that we considered di§erentiable payo§ functions in the previous section. We

now show how to incorporate kinks that arise under Cournot competition when mar-

kets do not clear because of excessive quantities. We present the following su¢cient

conditions.

Proposition 6 Let A ⊆ R+ with A convex and compact. Assume ui (q) = qiP (# (q))−

c (qi) where (i) c is strictly increasing, convex and twice di§erentiable and (ii) P is

nonnegative, decreasing and convex such that P is twice di§erentiable and zP (z) is

concave whenever P > 0. Then there exists ξ 2 A that beats the play and where ξ is

a symmetric NE strategy of "0.

In particular we find that the Cournot strategy of the game against selves beats

the play in the canonical Cournot competition setting with linear inverse demand

and constant marginal costs, so where A = R+, P (z) = max {a− bz, 0} for some

a, b > 0 and c (x) = c0 · x for some c0 ≥ 0. Note that when c0 = 0 then this game has

multiple NE, one that yields a strictly positive payo§ for each player and uncountably

many others that yield a payo§ equal to zero for each player (let each player choose

a su¢ciently large quantity).

Proof. By the assumptions there exists a pure symmetric NE strategy of "0. Let

ξ be such a strategy.

Assume that P (nξ) = 0. Assume that there is some x 2 A such that x < ξ. As

ξ is a symmetric NE strategy of "0, u (ξn) = −c (ξ) ≥ u
(
x, ξn−1

)
≥ −c (x) which

contradicts c being strictly increasing. So ξ = inf A. As P is decreasing we obtain

that ξ beats the play.

Assume that P (nξ) > 0. First we show that fξ (q) ≥ 0 when P (# (q)) >

0. As u (ξ, q−i) is convex but possibly has a kink when P turns zero we can ap-

proximate u (ξ, q−i) up to an arbitrarily small error by a smooth convex function

(Koliha, 2003). Proposition 5 then shows that fξ attains its minimum within the set

{q : P (# (q)) > 0} at ξn.
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Now consider q such that P (# (q)) = 0. As c is convex and P ≥ 0,

fξ (q) ≥ −c (ξ) +
1

n

nX

i=1

c (qi) ≥ −c (ξ) + c
(
# (q)

n

)
.

As P (nξ) > 0 and P is decreasing we obtain # (q) ≥ nξ, together with the fact that

c is increasing it follows that fξ (q) ≥ 0.

We provide two counterexamples related to Proposition 6, each with n = 2. The

first example shows that convexity of the inverse demand cannot be dropped from the

statement of Proposition 6. Assume that c = 0 and P (z) = max {0, 1− z − σ · z2}

for σ > 0. Then ξ = 1
16σ

(
−3 +

p
9 + 32σ

)
is a symmetric NE strategy of "0 and

easily seen to be the only candidate for beating the play. But ξ does not beat the

play as fξ
(
1
2σ

(
−1 +

p
1 + 4σ

)
− ξ, 0

)
< 0 for all σ > 0.10

The second example shows that concavity of zP (z) is cannot be dropped from

Proposition 6. Let P (z) = 26 + c − 28z + 8z2 for z 2
[
0, 3

2

]
and P (z) = 1

z−1 + c if

z > 3
2
. Then P is twice continuously di§erentiable, strictly decreasing and convex.

However zP (z) is not concave for z ≥ 3
2
. The symmetric NE strategy of "0 is given

by ξ = 1. But ξ does not beat the play as limx!1 fξ (x, x) = −1
2
.

2.5.2 Performance in Data

In the following we investigate how a strategy that beats the play performs when

facing real opponents. The theory tells us that it performs better than when adapting

the choice of a random subject. The data will show us how much better it performs

and how close it gets to choosing a best response to the empirical distribution of

choices. We consider data from laboratory experiments where all subjects have the

same monetary payo§ function. Although misleading from a conceptual point of view

(as beat the play is not about comparing payo§s of di§erent players), the performance

is measured by comparing the monetary payo§s of a particular strategy to the average

monetary payo§s among the subjects. In particular, we are assuming that player 0 is

risk neutral.
10Nevertheless, the symmetric NE strategy does not perform that bad in this example, its short-

coming is bounded above by 0.0087 for any " > 0.
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We perform our evaluation using data from a laboratory experiment on Cournot

competition with linear demand and no costs where we have found that Cournot out-

put beats the play. Interestingly we did not find any calculations on the performance

of the Cournot output in such experiments. In this literature the interest seems to

put all focus on how the aggregate demand in the lab di§ers from the equilibrium

aggregate demand. Specifically, we consider the data from the experiments of Huck

et al. (2004). Payo§s are given by u (q) = q1max {(99− # (q)) , 0} with action set

A = {k ∗ 0.01 : k 2 N0, k ∗ 0.01 ≤ 100} . The game is played in 25 rounds with fixed

partner matching. There were 6 sessions (markets) for each value of n 2 {2, 3, 4, 5}.

For the data analysis we proceed for each value of n (number of players) and

round k 2 {1, ..., 25} as follows. We compute the average payo§s π̄. Next we replace

a random subject in each session and compute the average payo§ across all sessions

(and all player roles within a session) of this player if replaced player chooses x and

denote this by π (x) . The performance of player 0 as compared to playing like others

is then given by π (ξ)− π̄ where ξ is the Cournot output 99
n+1

(note that 99
n+1

2 A for

all n 2 {2, ..., 5}). This di§erence is depicted in the figures as a dot. The best possible

performance is given by maxx π (x) − π̄. This di§erence is depicted in the figures by

an inverted triangle. In Figure 1 we plot on the left hand side these two performance

measures for the di§erent values of n and k. In the right hand side of this figure we

show the average quantities chosen by the subjects, in dependence of n and k.

According to Proposition 6, the dots have to always lie above the value 0, high-

lighted by a dashed line. By the definitions of beating the play and empirical best

response the dots have to lie below the inverted triangle. Interestingly, the dots lie

extremely close to the inverted triangle. Choosing the Cournot output leads in this

laboratory experiment to payo§s that are extremely close to the maximal possible

payo§. We provide a partial explanation. In Proposition 20 in Section D.2 we show

that the payo§ of the Cournot output is necessarily closer to that of the empirical

best response than to the average payo§ when n ≤ 5. In fact we show that the

performance of the Cournot output is at least a fraction 8
9
, 3
4
, 16
25
and 5

9
of that of the

empirical best response for n = 2, 3, 4 and 5, respectively.

Note that the observations in this data set come from a repeated game. We do

not predict that payo§s of the beating the play strategy maintain its property when
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Figure 1: Cournot experiment data. Lefthand side panels show the di§erence to

average payo§. Dots show di§erence from the Cournot output, reversed triangle

show di§erence from the empirical best response. In the righthand side panels, dots

show average quantities and dashed line shows the Cournot output level. Panels in

di§erent rows show a di§erent number n of players, x achsis in each panel shows the

round number.
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interacting with the same players over time. For a recommendation for how to play

in a repeated game one would have to apply the concept of beating the play to the

normal form of the repeated game. We include the data points in rounds k > 1

as a proxy for playing a game with others who have had previous experience in the

game. Strictly speaking, the performance of the Cournot output in the context of

the beating the play concept can only evaluated by looking at the data from round

k = 1.

3 Extensions

In the following subsections we relax our basic definition in various directions. First

we allow a strategy to perform slightly worse than when playing like the others. Next

we make the concept more flexible to accommodate that player 0 would never adapt a

strictly dominated strategy. Then we include beliefs. We assume that play of others

is independent (and identically distributed) and then, more generally, we consider

testing performance only on a subset of the strategy profiles.

3.1 Coming Close to Beating the Play

3.1.1 The Concept

Here we select a recommendation for settings where no strategy beats the play. For

each strategy we identify the so-called shortcoming. The shortcoming is the maximal

amount that the payo§ can fall short of that obtained when playing like others. We

recommend to use a strategy with the smallest shortcoming. A formal concept is

presented that exists under general conditions. Important examples are Bertrand

competition with homogeneous goods and first price auctions (the analysis of first

price auctions is postponed to Section 3.2).

Definition 4 (i) −1 · infs2An fx (s) is called the shortcoming of x 2 !A.

(ii) ξ 2 !A comes closest to beating the play if ξ 2 argmaxx2!A infs2An fx (s) .

(iii) ξ 2 A comes closest to beating the play with a pure strategy if

ξ 2 argmaxx2A infs2An fx (s) .
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It follows that the shortcoming is a non negative number and the shortcoming of

a strategy that beats the play is zero. Moreover, a strategy that comes closest to

beating the play has the smallest shortcoming.

Remark 2 We informally say that ξ almost beats the play if its shortcoming is

small. While the meaning of small can be context specific, one might categorize small

as being an order smaller than 1
n
maxs2An u (s) . An alternative measure for evaluating

the size of the shortcoming is provided in Section D.2.

We proceed by providing general conditions that ensure existence of a strategy

that comes closest to beating the play. On the side we identify a useful method for

finding such a strategy by characterizing it as part of an equilibrium in a fictitious

game against nature.

Let "f be the mixed extension of a two player zero-sum game between yourself

and nature in which you choose x 2 A, nature chooses s 2 An and your payo§ is

given by fx (s) .

Proposition 7 (i) There exists a strategy that comes closest to beating the play if A

is finite or if u is continuous and A is a compact subset of Rm.

(ii) If "f has a NE then ξ comes closest to beating the play if and only if (ξ, σ̄) is

a NE of "f for some σ̄ 2 ! {An} .

(iii) If ξ comes closest to beating the play then ξ is not strictly dominated.

Proof. Part (ii) follows directly from the minimax theorem, as a strategy ξ comes

closest to beating the play if and only if fξ (σ) = maxξ̄2!Aminσ2!{An} fξ̄ (σ) .

Part (i). Following Glicksberg (1952), these assumptions ensure that "f has a NE

and so existence follows from part (ii).

Part (iii) is straightforward.

3.1.2 Bertrand Competition Analysis

Consider price competition under homogenous goods where the firm of player 0 has

constant marginal costs. We show how to almost beat the play.
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Proposition 8 Let S = R+ and c 2 R+. Let Q be nonnegative, continuous and de-

creasing such that π (z) := (z − c)Q (z) is single peaked with {z∗} = argmaxp≥0 π (p),

z∗ > 0 and π (z∗) > 0. Assume

u (p) =

8
<

:

1
|{i:pi=p1}|

π (p1) if p1 = mini {pi} ,

0 if p1 > mini {pi} .

(i) It is not possible to beat the play.

(ii) The shortcoming of ξ = c, the symmetric NE strategy of "0, equals 1
n
π (z∗) .

(iii) The unique strategy that comes closest to beating the play with a pure strat-

egy is ξ 2 (c, z∗) that solves (ξ − c)Q (ξ) = 1
n+1
π (z∗) . Its shortcoming is equal to

1
n(n+1)

π (z∗) .

The intuition behind the impossibility to beat the play is as follows. Pricing too

low means to do worse than playing like others if those choose high prices. Pricing

too high means to risk not making any sales and similarly to do worse.

Note that the price that almost beats the play outperforms the symmetric NE

strategy of "0 by a factor of n + 1. It is strictly above marginal costs and is strictly

decreasing in n, approaching marginal costs as n ! 1. In particular, the Bertrand

paradox does not arise here.

We illustrate with two salient examples. For unit demand and willingness to pay

equal to v with v > c, the strategy ξ that comes closest to beating the play solves

ξ − c = 1
n+1

(v − c) so ξ = c + v−c
n+1
. Its shortcoming is equal to v−c

n(n+1)
.11 For linear

demand Q (z) = max {v − bz, 0} with b > 0 and v > bc we solve (ξ − c) (v − bξ) =
(v−bc)2

4(n+1)b
to find ξ = c+ 1

2b

(
1−

p
n
n+1

)
(v − bc). The shortcoming of ξ is (v−bc)2

4bn(n+1)
.

Proof. (ii) If ξ = c then

fξ (p) = −
1

n

nX

i=1

u (pi, p−i) = −
1

n
((min {pi}− c) ·Q (min {pi}))

≥ −
1

n
π (z∗)

where equality is obtained if p1 = z∗ and pi > p1 for all i > 1.

11This can be contrasted to the other two existing models of choice in games without restrictions

on behavior of others. Minimax regret prescribes to set a price equal to c+ v−c
2 . Maxmin utility is

attained by any price that is greater or equal to c.
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(i) As a strategy that beats the play has to be a symmetric NE strategy of "0

and as c is the unique symmetric NE strategy of "0 (Kaplan & Wettstein, 2000), the

proof of (i) follows from (ii).

(iii) Clearly, ξ < z∗ as the shortcoming of ξ is bounded above by the monopoly

profits. Consider only the i-th term u (ξ, pi) − u (pi, p−i) of fξ (p) . There are two

potentially worst cases. One is where pj = x for all j and x is slightly below ξ, in

which case u (ξ, pi)−u (pi, p−i) ≈ − 1
n
(ξ − c)Q (ξ) . Here we use the fact hat π is single

peaked. The other is where pj = z∗ for all j, in which case u (ξ, pi) − u (pi, p−i) =

(ξ − c)Q (ξ) − 1
n
(z∗ − c)Q (z∗). Both worst cases are independent of i. Hence we

choose ξ < z∗ to solve

(ξ − c)Q (ξ)−
1

n
π (z∗) = −

1

n
(ξ − c)Q (ξ)

and hence

(ξ − c)Q (ξ) =
1

n+ 1
π (z∗)

which proves the desired claim. Note that a solution to this equation exists as Q is

continuous.

Next we show how mixed pricing can improve performance and reduce the short-

coming.

Proposition 9 Consider assumptions on the game against selves specified in Propo-

sition 8. Assume additionally that π0 (c) > 0 and Q is continuously di§erentiable.

(i) There is no single price that comes closest to beating play.

(ii) Let ξ have density g (p) = π0(p)
n(p−c) for p 2 [z, z

∗] where
R z∗
z
g (p) dp = 1. Then ξ

comes closest to beating the play and has a shortcoming equal to π (z) .

Proof. Part (ii). We obtain the mixed pricing strategy that comes closest to

beating the play by applying Proposition 7 (ii). So we search for a NE of "f , the

hypothetical zero sum game between the player 0 choosing ξ and nature who chooses

the price vector p of the firms. Let π (x) = (x− c)Q (x) . Assume that player 0

chooses ξ from a distribution without point masses that has density g. Assume that

nature chooses p = (x)ni=1 for some x ≥ c. Then
Z
fξ (p) g (ξ) dξ =

Z x

0

(y − c) g (y) dy −
1

n
(x− c)Q (x) .
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Di§erentiating with respect to x we obtain (x− c) g (x) = 1
n
π0 (x) . So nature is indif-

ferent if g (x) = π0(x)
n(x−c) .

Let z > c be such that
R z∗
z
g (p) dp = 1. Note that z exists as π0 (x) is bounded

away from 0 in the neighborhood of x = c.

Now we need to find a mixed strategy of nature as a distribution H over x that

makes player 0 indi§erent on (z, z∗) . For y 2 (z, z∗) we compute
Z
fy (x) dH (x) = PH (x > y) π (y)−

1

n

Z
(x− c)Q (x) dH (x) .

Tomake this expression independent of y we letH have a cdf that satisfies PH (x ≤ y) =

1− π(z)
π(y)
. So H has a point mass 1− π(z)

π∗
at x = z∗. It is easily verified that (g,H) is

a NE of "f .

Part (i). Assume that the pure strategy y comes closest to beating the play. Then

(y,H) must also be a NE of "f . The only candidate for a pure strategy that comes

closest to beat the play is presented in Proposition 8, as it is the unique strategy that

comes closest to beating the play with a pure strategy. However it is easily seen that

this pure strategy is not part of a NE of the zero sum game "f .

We investigate mixed pricing in the two examples presented after Proposition

8. For unit demand we obtain pricing density g (x) = 1
n(x−c) on

[
c+ v−c

en
, v
]
, and

cdf G (x) = 1 − 1
n
ln v−c

x−c , the associated shortcoming equals (v − c) e
−n.12 The use

of an appropriate mixed pricing policy yields an improvement as compared to best

deterministic price by a factor of en

n(n+1)
, which is equal to 1.23 if n = 2 and 4.95 if

n = 5. For linear demand with c = 0 and b = v = 1 we obtain pricing density 1−2x
nx

on
[
−1
2
LambertW

(
−e−(n+1)

)
, 1
2

]
. The associated shortcoming equals

−1
4
LambertW (−e−n−1) (2 + LambertW (−e−n−1)) . The magnitude of improvement

as compared to the case of pure strategies is slightly larger than it was under unit

demand, it is equal to 1.63 for n = 2 and 6.72 for n = 5.

3.1.3 Bertrand Competition in the Data

We investigate how our strategies that almost beat the play perform in laboratory

experiments on Bertrand competition. We are particularly interested in di§erence

12This is equivalent to setting the randomized price p = c+ en(z−1) (v − c) where z ∼ U [0, 1] .
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between the single price recommendation (Proposition 8) and the mixed pricing rec-

ommendation (Proposition 9).

We consider data from the experiments by Dufwenberg and Gneezy (2000). Specif-

ically, we use the data from treatments 1a-f. There is unit demand, willingness to pay

equal to 100, a set of possible prices A = {2, .., 100} and number of firms n = 2, 3, 4.

There are 12 subjects for each treatment. The game was played 10 times with payo§s

being generated by randomly matching subjects in each round into groups of size n.

For n = 2 the pure strategy recommendation is 100
3
which is not an element of A.

Here we choose the integer that comes closest to beating the play, which is 33. For

implementing the mixed strategy recommendation we act as if A = [0, 100] .

For the data analysis we randomly match for each n and each round k the sub-

jects into groups of size n. Analogous to our investigation of the Cournot competition

data in Section 2.5.2, we plot the performance of the empirical best response (inverse

triangle), the pure strategy recommendation ξd (dot) and the mixed strategy recom-

mendation ξr (circle). We show the results in Figures 2−4 below. There is a di§erent

figure for each value of n, the x axis indicates the round of play. In these figures we

include the negative of the shortcoming of each recommendation (small triangle for ξd

and large for ξr) as given by Propositions 8 and 9. By the definition of shortcoming,

the circle lies above the large triangle and the dot lies above the small triangle. As

pricing strategies are selected to minimize their shortcomings, the shortcoming of the

mixed is larger than that of the pure. Hence, the large triangle lies below the small

one. Following the definitions of coming close to beating the play and empirical best

response, both circle and dot lie below the inverse triangle.

Observe that the strategies that come closest to beating the play perform well

above their corresponding theoretical lower bounds (the respective triangles). This is

to be expected as these lower bounds are calculated based on very specific worst cases

which are unlikely to occur in data. Note also that the presence of these lower bounds

determined the specific values for these two strategies. Other strategies reduce these

theoretical lower bounds even further. In all cases except for round 2 under n = 2, the

mixed pricing solution is closer to the average than the pure solution. This is intuitive

as the mixed solution tries to equalize losses in many di§erent configurations.

We average the values in each of these figures across the di§erent rounds and
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Figure 2: Bertrand competition with n = 2. Di§erence in payo§s to average payo§s

of deterministic solution (dot), randomized solution (circle) and best response to

empirical distribution (inversed triangle). Shortcoming of deterministic solution as

small triangle and randomized solution as large triangle.

Figure 3: Bertrand competition with n = 3.
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Figure 4: Bertrand competition with n = 4.

present the results in the following table.

n 2 3 4

pure 2 −1.5 −0.6

mixed −0.2 −0.9 −0.07

empirical 8.6 3.2 2.2

We observe that the deterministic and mixed pricing rules perform overall very similar

in this data set.

Concerning the repeated play in this experiment, the same caveat applies as in

our analysis of the Cournot competition data. Strictly speaking, the performance of

our recommended strategies can only be evaluated in round 1.

3.2 Adjusting Strategies

In this section we adapt our definition to deal with strategies that player 0 would not

choose. For instance, these could be strictly dominated strategies. We do not rule

out that she faces such a strategy as we do not know the utilities of others and hence

we do not know which strategies are strictly dominated for other players. In Section

3.4 we consider a definition in which some strategy profiles are completely ruled out
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from the comparison.

To illustrate, consider a bidder in a first price auction with private value v. When

making a bid ξ then one might face others that bid more than v but one would never

bid more than v. Hence, one would never play like player j within strategy profile s

if sj > v. However one might face others making bids above v. We propose how our

definitions can be modified.

Assume that player 0 can choose from !A but will only choose strategies from a

subset B ⊂ !A. Let g be a mapping from!A to B with g (s) = s if s 2 B where g (s)

is the strategy the player chooses if someone recommends s to him. In applications

the set B as well as the mapping g are easily identified. For instance, it is natural to

have no strictly dominated strategies in B in which case g (a) is an action in B that

strictly dominates a. To simplify notation we will drop B from the formal definition,

it is as if B is the image of g.

Definition 5 Let g : A ! !A. We say that ξ beats the adjusted play if g (ξ) = ξ

and
1

n

nX

i=1

(u (ξ, s−i)− u (g (si) , s−i)) ≥ 0 holds for all s 2 An.

We say that ξ comes closest to beating the adjusted play with a pure strategy if

g (ξ) = ξ and

ξ 2 argmin
x2A

sup
s2An

(
1

n

nX

i=1

(u (x, s−i)− u (g (si) , s−i))

)
.

We illustrate in a first price auction. Consider player 0 who wishes to bid for a

single object in a first price auction with a total of n bidders. Assume that she knows

her own value v and regards all player roles as indistinguishable. No assumptions

about values or bidding behavior of others are made. An action of a bidder in this

game is a bid b 2 R+ where the bidder who makes the highest bid wins the object,

ties are broken at random. The payo§ u of player 0 when bidding b equals v − b if

she wins the object and 0 otherwise. To avoid bidding above v when playing like

some bidder who bids above v we assume that the player bids v whenever playing

like someone who bid above v. So we set g (b) = min {b, v} .

Proposition 10 Let g (b) = min {b, v} . In this first price auction, the bid ξ = n
n+1
v
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comes closest to beating the adjusted play with a pure strategy. Its shortcoming is
v

n(n+1)
.

Proof. This result follows from our analysis of Bertrand price competition. Set

pi = v − bi and c = 0 to obtain from Proposition 8 the price 1
n+1
v and hence

the bid ξ is given by ξ = v − 1
n+1
v = n

n+1
v. The proof of this result assumed

nonnegative prices, which means here that bi ≤ v for all i. It shows that ξ 2

argmaxx≥0mins:si≤v
{
1
n

Pn
i=1 (u (x, s−i)− u (g (si) , s−i))

}
. Note that we can also in-

clude profiles s with si > v for some i as 1
n

Pn
i=1 (u (x, s−i)− u (g (si) , s−i)) ≥ 0 in

such profiles.

3.3 Independent Beliefs

In this section we rule out coordinated and asymmetric play of others.

We illustrate with an example. Consider payo§s such that the game against selves

is a Hawk Dove game. Specifically, let A = {H,D} where u (D,D) = 1, u (H,D) = 2,

u (D,H) = 0 and u (H,H) = −1. Following Proposition 2 it is not possible to beat

the play. It is easily shown that the shortcoming of any strategy is equal to 1
2
, attained

when the others play (H,D) . Shortcoming is arguably large, so it is not possible to

almost beat the play in this game. The inability to almost beat the play rests here

on the plausibility of asymmetric profiles (H,D) and (D,H) .

In this section we assume that player 0 believes that players make their choices

independently. As player roles are indistinguishable the circumstances that determine

which strategy a player chooses are the same for each player. So player 0 believes she

will face identically distributed strategies. In particular, neither (H,D) nor (D,H)

are candidate environments.

We provide the formal definition.

Definition 6 ξ beats the independent (identical) play if u (ξ,σn−1) ≥ u (σn) for all

σ 2 !A.

Note that a strategy that beats the play will also beat the independent play. The

following connection to the symmetric Nash equilibria in the game against selves "0

is easy to verify.

38



Proposition 11 If ξ beats the independent play then ξ is a symmetric NE strategy

of "0.

We connect to evolutionary game theory. Let "p be the population game in

which players choose pure actions from A and payo§s are given by ū where ū (x, y) =

u (x, yn−1) for x, y 2 !A. In the special case in which n = 2 then "p is equivalent to

the game against selves "0. We also call "p the corresponding population game.

Remark 3 A strategy ξ beats the independent play if and only if ξ is a globally

neutrally stable strategy (Hofbauer and Sandholm, 2009, HS) of the corresponding

population game.

With this connection we cite HS to obtain the following games in which it is

possible to beat the independent play: Hawk Dove game, Rock-Scissor-Paper game

in which w ≥ l (Example 2.3, HS, see also Footnote 4), a two person war of attri-

tion (Example 2.4, HS) and concave potential games which include congestion games

(Sandholm, 2005).

Concerning the observability of the variables used in Definition 6, note that it is

easy to estimate σ from data.

3.4 Incorporating Beliefs

Here we consider the setting where player 0 does not conceive each strategy profile as

a possible way in which others might play the game. So we only evaluate our criterion

for a subset of all strategy profiles. This can be seen as a way to incorporate beliefs,

or alternatively, to include a partial understanding of how others play the game. Of

course, a strategy that beats the play will maintain its property if some strategy

profiles are ruled out. However, other strategies might emerge that also have good

properties. Moreover, beating the play might become possible when some strategy

profiles are ruled out.

To illustrate, assume that the game against selves is an extremely simple pure

coordination game. Specifically, let A = {B,C} where u (a, a0) = 1 if a = a0 and

u (a, a0) = 0 if a 6= a0. Clearly, it is impossible to beat the play. The unique strategy

that comes closest to beating the play is to choose B and C with equal probability,
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the shortcoming is equal to 1
2
. As the shortcoming is arguably large, it is not possible

to almost beat the play.

The inability to almost beat the play in this example is due to the strong ex-

ternalities. Performance is only good if one can guess what others are doing. The

NE concept is based on guessing correctly what others are doing. Here we consider

weaker assumptions and assume that player 0 has some idea about how the game is

being played. These are not beliefs about what the others are doing but about the

possible ways the game is played if one does not take part. Specifically, one identifies

a set U ⊂ (!A)n of possible strategy combinations and then considers if one can do

better than when playing like others for any strategy profiles belonging to this set. A

special case of interest is where one believes that others choose similar strategies in

which case one can investigate if ξ can beat the play in a neighborhood of ξn.

Definition 7 Let U ⊂ (!A)n . Then ξ beats the play in U if fξ (σ) ≥ 0 for all σ 2 U.

Note that while our motivation is di§erent, beating the play in U generalizes

beating the independent play. To see this, simply set U = {σn : σ 2 !A} . Other

definitions such as coming closest to beating the play and shortcoming can similarly

be adapted to this setting with beliefs.

Returning to the simple pure coordination example above we find that B beats

the play if each player is more likely to choose B than C. Note that we can also apply

this concept in the Hawk Dove game setting (as described in Section 3.3). There we

observe that H beats the play when each player is believed to play D more likely

than H.

We extend our insights attained for beating the play as described in Propositions

1 and 2 to this setting. For completeness we also add a straightforward su¢cient

condition.

Proposition 12 (i) If ξ beats the play in a neighborhood U of ξn then ξn is a NE of

"0.

(ii) Assume A is finite and that player roles are anonymous. Let ξ 2 !A. If

u
(
ξk, an−k

)
6= u (ξn) for some a 2 C (ξ) and k 2 {1, ..., n− 1} and ξ beats the play

in a neighborhood U of ξn then ξ is a pure strategy.
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(iii) If ξn is a strict NE in the game against selves then there is a neighborhood

of ξn such that ξ beats the play in U.

To illustrate parts (i) and (ii), note that in the Hawk Dove setting (see Section 3.3)

there is no strategy ξ that beats the play in a neighborhood of ξn. ξ = 1
2
[H] + 1

2
[D]

is the unique symmetric NE strategy of "0, ξ is not a pure strategy but u (ξ, D) =
3
2
6= 1

2
= u (ξ, ξ) .

Proof. Parts (i) and (iii) are easily verified. Part (ii) follows when observing that

the proof of Proposition 2 also applies when only considering strategy profiles close

to ξn.

We connect again to evolutionary game theory by considering beating the inde-

pendent play in a neighborhood.

Remark 4 Let A be finite. Combining Definitions 6 and 7, observe that ξ beats the

independent play in U for some neighborhood U of ξn if and only if ξ is a neutrally

stable strategy (Maynard Smith, 1982) of the corresponding population game as de-

fined at the end of Section 3.3. This connects to numerous findings in the evolutionary

game theory literature, for example by Banerjee and Weibull (2000) on cheap talk in

symmetric 2× 2 coordination games.

Note that the concept of beating the play in a subset of the strategy profiles can be

implemented similarly to how it has been suggested by Kasberger and Schlag (2020).

Iteratively one reduces the set U until the shortcoming for strategy profiles belonging

to U is below some desired level.

4 Conclusion

Equilibrium analysis is pervasive in game theory. In fact, equilibria seem the only

natural prediction if players have a mutual understanding that they are trying to

solve the game. Yet there are many obstacles to this simple and naive statement.

Among the many we note that equilibria need not be unique and that information

and objectives of others need not be known, let alone modelable in a satisfactory

manor.
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We introduce an alternative approach to playing games that does not require

the ability to model how others make choices. The concept is easy to compute as

demonstrated in this paper with many examples.

One major but simple insight is that only symmetric NE strategies of the sym-

metric game against selves can beat the (independent) play. Similarly, only Nash

equilibria can beat the play under role conditioning.13 This reveals two novel in-

sights. First of all, to our knowledge, this is the first paper that gives NE a meaning

when only the payo§s of a single player are specified. We predict play consistent with

an equilibrium when a player has no idea what others will be doing. Second of all,

our paper gives symmetric games a new meaning. Traditionally, a symmetric game

postulates that all participants are identical, which is hardly ever the case. In our

context, players in the symmetric game against selves never play against each other.

The symmetric game against selves is only a construct used to interpret a necessary

condition. On the side, note that our methodology is not a refinement of the NE

concept. A strategy that comes closest to beating the play is often not a symmetric

NE strategy of the game against selves.

We uncover a close connection to evolutionary game theory. For instance, the

condition for beating the independent play is mathematically equivalent to that of a

globally neutrally stable strategy. However, the underlying stories are very di§erent.

The one builds on an infinite population of identical subjects comparing payo§s, the

other on a single player who is comparing strategies. The di§erent motivations lead

to di§erent extensions and variations. Of course the relationship between neutrally

stable strategies and symmetric NE strategies is not new. We uncover this finding

from a di§erent angle. We benefit from the connection to this evolutionary game

theory literature as it enables us to include a few additional examples. Our main

characterizations and the bulk of our examples are novel and not present in the

literature on neutral stability. One of the main reasons for the emergence of so many

results is the much simpler mathematics underlying the concept of beating the play.

To beat the play also means to beat the independent play, so results obtained under

beating the play can be applied to settings where independent play is more plausible.

13Similarly, only Bayesian Nash equilibria can beat the play under type conditioning as defined in

the online appendix.
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We designed our methodology to aid real life choices and to gain insights into

incentives in games. It can serve as a benchmark for comparison to peoples’ behavior

and choices, in the lab or in the field. The key ingredient, a comparison to payo§s

of existing strategies, should enhance the perspective of economic agents as opposed

to postulating a desiderata. The methodology leads to novel analytic structures that

call for new mathematical techniques. This paper o§ers a glimpse at the possible

new insights by presenting many applications and refinements of the basic concept.

Exciting extensions for future research include modelling beating the play in extensive

form games.
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online appendix

A Extensions that Allow for Asymmetries

We show how one can extend our definitions to the case where all roles in {1, ..., n} are

no longer indistinguishable. In the first setting we only compare to the strategies of a

subset of the players. In the second setting we retain the comparison to all strategies

but allow the player to condition her play on the role she takes.

A.1 Subset Comparison

Here we consider a setting where some but not all roles are indistinguishable. Player

0 wants to outperform those that are indistinguishable, regardless of what the other

players are doing. To apply this material in this section there have to be at least two

roles that are indistinguishable.

We allow the set of pure strategies to depend on the player role. Let Ai be the

set of actions that player i chooses from, i = 1, ..., n. Indistinguishable player roles

necessarily have the same set of actions.

A natural example is a market with buyers and sellers, where a seller tries to

beat the play of the sellers, regardless of the behavior of the buyers. To analyze this

example in more detail we adapt our definition of coming closest to beating the play.

Other definitions are easily adapted too.

Definition 8 Let I ⊆ {1, .., n} with |I| ≥ 2 such that A = Ai for i 2 I. Assume that

roles in I are indistinguishable. We say that ξ 2 A comes closest to beating the play

of players belonging to I with a pure strategy if

ξ 2 argmax
x2A

inf
s2×Aj

(
1

|I|

X

i2I

(u (x, s−i)− u (si, s−i))

)
.

Note that the strategies used by roles that are not indistinguishable influence per-

formance just like some unknown parameter. Player 0 has to anticipate the worst case

and tries to do better in this worst case than the strategies used by indistinguishable
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roles. In Section B we generalize this approach and explicitly allow for unknown

parameters.14

We use the definition above to make a recommendation to a seller in the following

simple market. The good is homogenous. Seller 0 (player 0) produces with marginal

costs c0. There are n − 1 other potential sellers with n ≥ 2 and m potential buyers

with m ≥ 1. Each buyer has unit demand and a willingness to pay that is at most v̄.

The market takes place by each seller choosing a minimal per unit selling price and

each buyer a maximal price she is willing to pay for one unit. Trade takes place at the

lowest price chosen by the sellers with any buyer who o§ered a maximal price above

this level. Payo§s of seller 0 are given by p− c0 if she sells at price p and 0 otherwise.

Then it follows easily that ξ = c0 +
v̄−c0
n+1

comes closest to beating the play of the

sellers with a pure strategy. The reason is that the worst cases are attained when

all buyers are willing to pay any price below v̄. Hence, our results from Proposition

8 apply when setting Q = m. In particular, there is no need to explicitly specify a

rationing rule.

As a di§erent example consider Cournot competition with a homogenous good.

Seller 0 has marginal cost c0 in a triopoly where one other firm is considered indistin-

guishable. Let the inverse demand of seller 0 be given by P (Q) = max {1−Q, 0} and

assume c0 2
[
0, 1

2
− 1

4

p
2
]
. Then it is easily verified that ξ = 3

7
− 1
7

p
2− 1

7

(
2
p
2 + 1

)
c0

is the best attempt to beat the play of two sellers with a pure strategy. Note that this

solution lies below the solution 1
4
(1− c0) obtained when all three sellers are indis-

tinguishable. The associated shortcoming equals 1
196

(
11− 6

p
2
)
(1 + 2c)2 and ranges

from 0.013 to 0.021.

A.2 Heterogeneous Payo§s

We now incorporate heterogeneity within and between player roles in a similar spirit

to how it is done in the context of Bayesian games. We maintain the assumption

that player roles are indistinguishable. Examples include first price auctions with

heterogeneous bidders and Cournot competition with heterogeneous cost functions.

14Note that if we let I be a singleton in Definition 8 then we obtain the definition ! attaining

minimax regret.
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We consider a setting in which player 0 learns her type before the game starts

and chooses her strategy prior to learning her type. So the strategy of player 0 is

a description of what she chooses for each type. The type determines her set of

pure strategies and her payo§ function. Types of other players may or may not be

observable.

A.2.1 Private Types

We first consider the case where types of other players are not observable which we

refer to as private type setting. Player roles are indistinguishable so each player in

the game has the same set of possible types and chooses a strategy that conditions

on her type.

Note that the type of player 0 cannot be how tall she is as she can hardly choose

how to condition on her height before she knows how tall she is. It might be her

cost function as a firm if this cost function is linked to recent occurrences such as

whole sale prices paid in the morning. It is less plausible model if the cost function

is determined by outcomes in the distant past, such as a patent she purchased long

ago. First price auctions with private values that are learned before the auction can

be a good example.

To help player 0 evaluate her strategy given the play of others prior to the re-

alization of types we introduce a distribution over the joint profile of types. This

distribution can be considered the beliefs of player 0. No assumptions on the distri-

bution of the types experienced by other players are made.

We present the formal model. Let T be a set of types with typical representative

for the type of player i denoted by θi, i = 1, .., n. The types of the players in the game

is denoted by θ = (θ1, .., θn). Let T ⊆ T n be the set of possible vectors of types. At

the beginning of the game a vector of types θ 2 T is drawn from some distribution F .

Each player only knows her own type. Let Aθ0 be the set of actions of a player with

type θ0 2 T. A pure strategy si of player i is mapping from T to [θ02TAθ0 such that

si (θ0) 2 Aθ0 for θ0 2 T. Let S be the set of such pure strategies. Mixed strategies

are elements of !S.

Let u(i)
(
(sj (θj))j ; θi

)
be the payo§s of player 0 when she is in the role of player i
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and player j has type θj and chooses pure strategy sj (θj) for j 2 {1, ..., n} .We extend

weak symmetry to include types as follows. For each i 2 {2, ..., n} that there exists

a permutation πi of {1, ..., n} with πi (1) = i such that u(i) (s; θi) = u(1) (sπi ; θi) ,

θπi 2 T and F (θ) = F (θπi) for all θ 2 T where zπi =
(
zi, zπi(2), ..., zπi(n)

)
. We

simplify notation and write u (si, s−i; θi) instead of u(1) (sπi ; θi) . The game against

selves is defined by the Bayesian game with pure strategies in S in which ui (s; θi) =

u (si, s−i; θi) and type vector θ is drawn according to F.

Note the restrictions on the game that come from indistinguishability. Players

with the same type have the same set of pure strategies. Payo§s in the di§erent roles

for a given type can be translated into payo§s as perceived as player 1. The joint

distribution of types is invariant to the di§erent player role perspectives.

Definition 9 Assume private types. A strategy ξ 2 !S beats the play under private

information if for all s 2 S,
nX

i=1

Z (
u
(
ξi (θi) , (sj (θj))j 6=i ; θi

)
− u

(
si (θi) , (sj (θj))j 6=i ; θi

))
dF (θ) ≥ 0.

The following implication is immediate.

Proposition 13 Assume private types. If ξ beats the play under private information

then ξn is a Bayesian Nash equilibrium of the game against selves.

We generalize Proposition 5.

Proposition 14 Assume private types. Let A ⊆ R be such that A is convex. For

each θ0 2 T assume that u (s, θ0) = g0 (s1, θ0) + s1g1 (# (s) , θ0) is such that g0 (·, θ0)

is di§erentiable and concave, g1 (·, θ0) is di§erentiable and convex such that zg1 (z, θ0)

is concave. If ξ 2 AT is a symmetric Bayesian NE strategy of "0 then ξ beats the

play under private information.

Proof. The proof is a straightforward generalization of that of Proposition 5,

verifying that fξ is convex and that ξ is a local minimum.

Note that the above result does not apply to the typical Cournot competition

game in which the inverse demand has a kink. More research is needed to deal with

such kinks. It also does not apply first price auctions that have discontinuous payo§

functions. An analysis of first price auctions under type conditioning is deferred to

future research.
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A.2.2 Public Types

We now briefly comment on how the model looks when player 0 can also observe

the types of all other players. This is referred to as the public type setting. No

assumptions are needed on what other players can observe. It is only important that

one cannot rule out that all players know the types of all others. We continue to

assume that the payo§ of player 0 only depends on her own type.

A pure strategy si for player i is now a mapping from T to [θ02TAθ0 such that

si (θ) 2 Aθi for all θ 2 T . Let S be the set of all such pure strategies. In particular,

the set of pure strategies for player i also includes those situations in which player

i only knows some types of the others. The game that is given by Ai = Aθi and

ui (s) = u (ai, a−i; θi) for i 2 {1, ..., n} is called the θ game against selves. The

remaining description and definitions can easily be adapted from the private type

setting. Here we talk about beating the play under public information.

Consider the special case where there is a single type vector θ. So the support of

F consists of n permutations of θ. Then it follows immediately from the definitions

that ξ beats the play under public information if and only if

1

n

nX

i=1

u (ξi (θ) , a−i; θi) ≥
1

n

nX

i=1

u (ai, a−i; θi) for all a 2 ×Aθi . (11)

Note that this situation of a single type vector is not mentioned as a plausible config-

uration, but as a useful building block for compiling su¢cient conditions as outlined

below.

We obtain some nice connections to NE of asymmetric games when recommending

strategies that do not rely on a specific symmetric distribution of types F . The proof

is straightforward given the material presented up to now.

Proposition 15 Assume public types.

(i) ξ beats the play under public information for each symmetric distribution F

over type profiles in T if and only if (11) holds for all θ 2 T .

(ii) Fix a strategy ξ and a vector of types θ. If (11) holds then (ξi (θi))
n
i=1 is a

Nash equilibrium of the θ game against selves.

We use part (ii) to make a recommendation for Cournot competition with homo-

geneous goods and heterogeneous firms. The cost of a firm is her type, let ci be the
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cost of firm i for i 2 {1, ..., n} . Let P be the inverse demand of the market (that

may have a kink at P = 0). We cannot build on Proposition 6 as its proof relies on

the fact that all firms have the same cost function in the game against selves. To

simplify the analysis, unlike Proposition 6, we explicitly rule out situations where

q /2 cl {q : P (s (q)) > 0}. Unlike NE analysis we have to otherwise deal with arguable

pathological case in which P = 0. So we assume that there is some mechanism that

ensures that total demand does not reach a zero market price (except on the boundary

to the region with positive prices). Specifically, let qL = qL (q) be such that qL = q

when P (s (q)) > 0 and qL 2 @ {q : P (s (q)) > 0} when P (s (q)) = 0. In particular,

note that P
(
s
(
qL
))
= P (s (q)) .

Proposition 16 Let A ⊆ R+ with A convex. Let θ = c be a vector of cost func-

tions such that ci is increasing, convex and di§erentiable for i 2 {1, ..., n}. For

i 2 {1, ...., n} let u (qi, q−i; ci) = qLi P
(
s
(
qL
))
− ci

(
qLi
)
where P is nonnegative, de-

creasing and convex such that if P > 0 then P is di§erentiable and zP (z) is concave.

If ξ (θ)1 0 is a pure strategy NE of "θ then ξ (θ) satisfies (11).

So our recommendation is to identify for each θ a NE of the θ game against selves

and to choose the strategy that corresponds to your own type.

Proof. Let fξ (q) := 1
n

Pn
i=1 u(i) (ξi,σ−i)−

1
n

Pn
i=1 u(i) (σi,σ−i) . We compute

fξ (q) =
1

n

nX

i=1

 
ξiP

 
ξi +

X

j 6=i

qj

!
− ci (ξi)

!
−
1

n

 
nX

i=1

qi

 
P

 
X

j

qj

!!
− ci (qi)

!

=
1

n

nX

i=1

 
ξiP

 
ξi +

X

j 6=i

qj

!!
−
1

n

nX

i=1

ci (ξi)−
1

n

 
nX

j=1

qj

!
P

 
nX

j=1

qj

!
+
1

n

nX

i=1

ci (qi) .

Observe that the assumptions made above imply that fξ (q) is convex in q when

P (q) > 0. As P is decreasing, {q : P (s (q)) > 0} is a convex set. Hence it is enough

to show that fξ (q) ≥ fξ (ξ) when P (q) > 0.

Now we show that fξ (q) is flat at q = ξ which then implies that ξ is a minimum.

d

dqk
fξ (q) =

1

n

X

i6=k

 
ξiP

0

 
ξi +

X

j 6=i

qj

!!
−
1

n

 
nX

j=1

qj

!
P 0

 
nX

j=1

qj

!

−
1

n
P

 
nX

j=1

qj

!
+
1

n
c0k (qk)
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so
d

dqk
fξ (q) |q=ξ = −

1

n
ξkP

0

 
nX

j=1

ξj

!
−
1

n
P

 
nX

j=1

ξj

!
+
1

n
c0k (ξk) = 0

as ξ is a NE of "0.

Let’s compare beating the play with and without public information in Cournot

competition. Under public information, player 0 evaluates the choice in each role with

the corresponding cost function assigned to this role. Performance is then evaluated

by taking an average across all roles. Player 0 need not beat the play in each role.

To beat the play may mean to take into account low payo§s when having high costs

that is o§set by high payo§s when having low costs. The solution is to choose the NE

of the asymmetric game against selves. In the setting without public information the

firm evaluates all circumstances with the same cost function. In some markets she

may do worse than the replaced action if this is o§set by doing better in the same

market in a di§erent role. The solution is to choose a symmetric NE strategy of the

game against selves. So the solutions are typically very di§erent and yet both beat

the play, in their own context. In the setting without public information, quantities

chosen by others are evaluated with own costs. In the public information setting they

are evaluated with the cost function associated to the respective role.

B Uncertainty

In this section we extend our methodology to include uncertainty about parameters

of the game. Up to now we only considered uncertainty about the play of others.

Generally speaking, a player often does not know everything about the payo§s

in the game she will be playing. We propose how to deal with this uncertainty

without introducing priors and do this consistently with our previously introduced

methodology. In particular, uncertainty is subjective and only refers to player 0.

Let β be an unknown parameter that describes the details of the game and assume

that player 0 knows that β is in a set B. Let u (s; β) be the payo§ when β is the true

parameter. Let

fξ (s; β) :=
1

n

nX

i=1

(u (ξ, s−i; β)− u (si, s−i; β)) .
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Definition 10 ξ 2 A comes closest to beating the play with a pure strategy when β

in B if

ξ 2 argmax
x2A

inf
s2An,β2B

fx (s; β) .

Note that our concept of coming closest to beating the play of a subset of the

players presented in Section A.1 is a special case. Let the parameter β describe

the strategies chosen by the players that are not indistinguishable and appropriately

define a new game in which n is the number of indistinguishable players in the original

game.

We illustrate this concept in Bertrand competition with limited information about

the demand. Player 0 is uncertain about the demand and only knows a maximal

demand attainable for each price. This scenario might arise when a new firm does

not know if it can attract customers, but knows the existing demand. We present a

general result and then illustrate the finding with two examples.

Proposition 17 Consider Bertrand competition as defined in Proposition 8. Let

c be the unit cost of production. Let Q̄ (p) be the maximal demand at price p, so

Q (p) ≤ Q̄ (p) for all p. Assume that Q̄ is continuous and decreasing and (p− c) Q̄ (p)

is single peaked. Then ξ comes closest to beating the play with a pure strategy when

Q ≤ Q̄ if

ξ 2 arg max
x2[0,p∗]

inf
p:p>x

{
−
1

n
(x− c) Q̄ (x) ,

(
(x− c)−

1

n
(p− c)

)
Q̄ (p)

}

where {p∗} = argmaxp
{
(p− c) Q̄ (p)

}
. The associated shortcoming equals 1

n
(ξ − c) Q̄ (ξ) .

Proof. Let π∗ = (p∗ − c) Q̄ (p∗) . We can assume that all firms choose the same

price p. Choose some x ≤ p∗. If p ≤ x then

fx ≥ −
1

n
(p− c)Q (p) ≥ −

1

n
(p− c) Q̄ (p) ≥ −

1

n
(x− c) Q̄ (x) .

If p > x then Q (p) ≤ Q (x) so

fx = (x− c)Q (x)−
1

n
(p− c)Q (p) ≥ (x− c)Q (p)−

1

n
(p− c)Q (p)

≥ min

{
0,

(
x− c−

1

n
(p− c)

)
Q̄ (p)

}
.
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It follows that infp:p>ξ
{(
ξ − c− 1

n
(p− c)

)
Q̄ (p)

}
= − 1

n
(ξ − c) Q̄ (ξ) < 0. Let p̄ 2

arg infp:p>ξ
{(
ξ − c− 1

n
(p− c)

)
Q̄ (p)

}
. Observe that the worst case is attained by a

demand Q such that Q is constant on [ξ, p̄] which means that the lower bound on fξ

is tight and the largest possible. Hence, ξ comes closest to beating the play with a

pure strategy.

Consider the shortcoming of the strategy that comes closest to beating the play

with a pure strategy. By the respective definitions, it is weakly larger when demand

can only be bounded from above than when the upper bound is the true demand.

In fact, when Q̄ is strictly decreasing, then it is strictly larger. This follows when

comparing Propositions 17 and 8. This is because the worst case distribution is flat

in order to reduce profits at ξ without violating the assumption that Q is decreasing

(see proof of Proposition 17). Note also that the recommended strategy is strictly

larger under uncertainty. We illustrate when Q̄ (p) = max {0, 1− p} . Then it follows

after some straightforward algebra that

ξ =
2c+ 2 + cn2 + (1− c)n− 2 (1− c)

p
n

4 + n2

with an associated shortcoming given by

(2 + n− 2
p
n) (2 + n2 − n+ 2

p
n)

n (4 + n2)2
(1− c)2 ,

which for n ≤ 20 is approximately 3
4n(n+4)

(1− c)2 . If we instead choose the solution

for the case where Q = Q̄ for the uncertainty setting we find a shortcoming equal to

(
−n+ n

p
n
n+1

+ 2
)2

16n
(1− c)2 .

We plot shortcomings without the (1− c)2 term, so for the case where c = 0, associ-

ated to the strategy that comes closest to beating the play with a pure strategy when

Q = Q̄ (solid line), when Q ≤ Q̄ (dashed line), and when the solution from Q = Q̄ is

used for the setting where Q ≤ Q̄ (dotted line).

On the other hand, if Q̄ is derived under unit demand where Q̄ (z) = 1 for z ≤ v

and Q̄ (z) = 0 otherwise, then the solutions of Propositions 8 and 17 coincide.
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Figure 5: Shortcoming under Bertrand competition with demand equal to and

bounded above by Q̄ (z) = max {1− z, 0} .

C Others Try to Beat the Play Too

In this section we show how one can include knowledge that others may be trying to

beat the play too. To simplify exposition we assume that all those that are trying to

beat the play are identical to player 0. In particular, this means that they have the

same utility function as player 0.

Two alternative models come to mind. Under the one there is a probability that

other players also attempt to beat the play. In the alternative, it is known that some

other players are trying to beat the play too. We illustrate the latter approach. The

former approach would be formalized analogous to (Renou & Schlag, 2011).

Assume that player 0 knows that there are k other players who are also trying to

beat the play, with k 2 {1, ..., n− 2} . If ξ beats the play under these circumstances,

then we assume that all those who are also trying to beat the play also play ξ. This

means that we only have to check whether ξ performs better than when playing like

others in strategy profiles in which k players are choosing ξ. The formal definition is

as follows.

Definition 11 Let k 2 {1, ..., n− 2} . We say that ξ beats the play with k others
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attempting if

1

n

nX

i=1

(u (ξ, s−i)− u (si, s−i)) ≥ 0 for all s 2 An such that |{j : sj = ξ}| ≥ k.

Clearly, the definition gets less stringent as k increases. Note that the beating

the play condition arises if k = 0 is inserted into this definition, the conditions for

ξn to be a NE of the game against selves emerges if k = n − 1. In particular, if a

strategy beats the play then it retains its properties if it is known that others are

trying to beat the play. Once again it follows that any strategy with this property is

a symmetric NE strategy of the game against selves.

We illustrate in Bertrand competition with convex costs and focus on pure strate-

gies. We briefly describe the essentials before making the formal statement. There

are k other firms attempting to beat the play. So the prices in the game are given by k

firms choosing the candidate price ξ and the other n−k firms choosing some unknown

price. When others are also attempting to beat the play then there is no concern of

not pricing high enough. There is only pressure to price so low that when the firms

with the unknown prices price even lower then player 0’s profits when replacing one

of them would be negative. For the case of constant marginal costs this means to

price at marginal costs and to get zero profits. When costs are strictly convex then

pricing su¢ciently low works if more than half the players are attempting to beat the

play.

Proposition 18 Consider Bertrand competition with a homogeneous divisible good

with n ≥ 3, k 2 {1, .., n− 2} S = R+, increasing and convex costs with c (0) = 0,

continuous and decreasing demand Q and payo§s given by

u (p) =

8
<

:
p1

1
|{i:pi=p1}|

Q (p1)− c
(

1
|{i:pi=p1}|

Q (p1)
)
if p1 = mini {pi} ,

0 if p1 > mini {pi} ,

with u (xi,1n−i) as function of x being single peaked for each i 2 {1, .., n} .15

(i) It is not possible to beat the play with a pure strategy.

(ii) If (a) marginal costs c0 (Q) are constant, (b) n ≤ 4 or (c) k ≥ n
2
− 1 then it

is possible to beat the play with k others attempting. Under (a) choose ξ = c0. Under

15u
(
xi,1n−i

)
stands for u

(
xi, yn−i

)
for some y > x.
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(b) and (c) choose ξ ≥ 0 such that u
(
ξk+1,1n−k−1

)
= 0 or any ξ ≥ 0 that solves

u
(
ξk+1,1n−k−1) ≥ 0 ≥ u

(
ξn−k−1,1k+1

)
.

(iii) If n ≥ 5, k < n
2
− 1 and costs are strictly convex then it is not possible to beat

the play with a pure strategy with k others attempting.

Note that ξ is a symmetric NE strategy if and only if u (ξn) ≥ max {0, u (ξ,1n−1)} .

Proof. Part (i). Assume that ξ 2 A beats the play. Let z > 0 be such that

u (zn) > 0. Following the arguments made in the proof of Proposition 8, replacing z∗

by z, we obtain

inf
p2Rn+

fξ (p) ≤ min
{
−u (ξn) , u

(
ξ,1n−1)− u (zn)

}
.

So if ξ beats the play then u (ξn) = 0 and u (ξ,1n−1) ≥ u (zn) but u (ξ,1n−1) ≤

nu (ξn) = 0 which is a contradiction to u (zn) > 0.

Parts (ii) and (iii). Assume that ξ 2 A beats the play with k others are attempting.

We are interested in infp fξ
(
ξk, pk+1, ..., pn

)
. There are only two potential worst cases.

Consider the situation in which the n − k other firms price higher than ξ. Then ξ

needs to satisfy

u
(
ξk+1,1n−k−1) = ξ 1

k + 1
Q (ξ)− c

(
1

k + 1
Q (ξ)

)
≥ 0 (12)

as the n − k other firms are making no sales. Consider the situation in which the

n − k other firms choose the same price which is slightly below ξ. Then ξ needs to

satisfy

0 ≥ u
(
ξn−k−1,1k+1

)
= ξ

1

n− k − 1
Q (ξ)− c

(
1

n− k − 1
Q (ξ)

)
. (13)

Here we use continuity of Q and single peakedness. It follows that ξ 2 A beats the

play with k others attempting if and only if (12) and (13) hold.

We show that there exists ξ such that u
(
ξk+1,1n−k−1

)
= 0. As u

(
xk+1,1n−k−1

)

is continuous in x and u
(
0k+1,1n−k−1

)
≤ 0 we only have to find y such that

u
(
yk+1,1n−k−1

)
> 0. Note that u

(
xk+1,1n−k−1

)
= x 1

k+1
Q (x) − c

(
1
k+1
Q (x)

)
≥

1
k+1
Q (x)

(
x− c(Q(x))

Q(x)

)
where c(Q(x))

Q(x)
is decreasing whenQ (x) > 0. As u

(
xk+1,1n−k−1

)

is single peaked we have Q (0) > 0. Then if y > c(Q(0))
Q(0)

then u
(
yk+1,1n−k−1

)
≥

1
k+1
Q (y)

(
y − c(Q(y))

Q(y)

)
≥ 1

k+1
Q (y)

(
ξ − c(Q(0))

Q(0)

)
> 0.
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Assume that k + 1 ≥ n− k − 1. We show that (12) and (13) are compatible with

each other. In particular, this means that if ξ solves u
(
ξk+1,1n−k−1

)
= 0 then (12)

and (13) hold.

By convexity of c we have k+1
n−k−1c

(
1
k+1
Q (ξ)

)
≤ c

(
1

n−k−1Q (ξ)
)
, so

(n− k) u
(
ξn−k−1,1k+1

)
≤ (k + 1) u

(
ξk+1,1n−k−1)

and hence

u
(
ξk+1,1n−k−1) ≥ n− k − 1

k + 1
u
(
ξn−k−1,1k+1

)
.

Now consider k + 1 < n− k. Then the arguments above show that

u
(
ξk+1,1n−k−1) ≤ n− k − 1

k + 1
u
(
ξn−k−1,1k+1

)

with strict inequality holding whenever c is strictly convex. So if c is strictly convex

then we find that (12) and (13) cannot both be true.

D Alternative Definitions

D.1 Beating the Loser

Consider a weaker definition than beating the play in which the player wishes to

choose a strategy that does better than some strategy used by others. So instead

of doing better than a random strategy the objective is now to do better than the

worst strategy. To have this property seems to be a minimal requirement. Clearly,

any strategy that does well when comparing to strategies used by others should also

outperform the worst strategy used by others. However, it is doubtful that this

property alone can be used to justify a particular strategy. We acknowledge that the

definition can be useful to understand what is going on when one cannot beat the

play. However the insights are not substantial and hence we have placed this material

in the appendix.

Definition 12 The strategy ξ beats the loser if for each s 2 An there exists i 2

{1, .., n} such that u (ξ, s−i) ≥ u (si, s−i) .
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Note that the definition remains unchanged if instead one formulates it with re-

spect to mixed strategies, so requires for each σ 2 × (!A)n that there exists i such

that u (ξ,σ−i) ≥ u (σi,σ−i) .

Proposition 19 (i) If ξ beats the loser then ξ is a symmetric NE strategy of "0.

(ii) If ξ beats the play then ξ beats the loser.

(iii) If ξ does not beat the play and infs2An fξ (s) = infa2A fξ (an) then ξ does not

beat the loser.

Proof. Parts (ii) and (iii) follow from the definitions.

For part (i), assume that u
(
z, ξn−1

)
> u (ξn) for some z 2 A. Let σ = (1− ") ξ +

"z. Then u (σ, σn−1) > u (ξ,σn−1) if " is su¢ciently small which implies that ξ does

not beat the loser.

For instance, from the above and our analysis in Section 3.1.2 it follows that it is

not possible to beat the loser in Bertrand competition as described in Proposition 8.

The following example shows that not every strategy that beats the loser also

beats the play.

Example 1 Let u be payo§s as in a Rock Scissors Paper game, so A = {R, S, P} such

that u (R, S) = u (S, P ) = u (P,R) = w > 0 and u (S,R) = u (P, S) = u (R,P ) =

−l < 0. The symmetric NE strategy ξ of "0 puts equal weight on each of the pure

strategies. It is easily verified that ξ beats the loser if and only if w ≥ l while ξ beats

the play if and only if w = l.

D.2 The Magnitude of Beating the Play

For a strategy that beats the play it can be interesting to capture where its perfor-

mance lies between playing a best response and realizing payo§s as if playing like

others. We do this as follows.

Definition 13 ξ beats the play by magnitude λ∗ if λ∗ is the largest value of λ ≤ 1

that solves

1

n

nX

i=1

u (ξ, s−i) ≥ λ
1

n
max
x2A

(
nX

i=1

u (x, s−i)

)
+ (1− λ)

1

n

nX

i=1

u (si, s−i) for all s 2 An.
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We present a formula for λ∗. LetM = {s 2 An : maxx2A {
Pn

i=1 u (x, s−i)} >
Pn

i=1 u (si, s−i)} .

If M = ; then λ∗ = 1. If M 6= ; then

λ∗ = min
s2M

Pn
i=1 u (ξ, s−i)−

Pn
i=1 u (si, s−i)

maxx2A {
Pn

i=1 u (x, s−i)}−
Pn

i=1 u (si, s−i)
. (14)

We illustrate in Cournot competition with linear demand and constant marginal

costs. We impose that quantities are never excessive and use the notation from Section

A.2.2.

Proposition 20 Let A = [0, 1], 0 ≤ c0 < 1 and u (q) = qL1
(
1− #

(
qL
))
− c0 · q1.

Then ξ = 1−c0
n+1

beats the play by magnitude

λ∗ =
4n

(n+ 1)2
.

The values for λ∗ for n = 2, 3, 4, 5 are given by 8
9
, 3
4
, 16
25
and 5

9
respectively. Note

that the proof reveals that the right hand side in (14) is independent of q if # (q) ≤ 1

and ξ + # (q−i) ≤ 1 for all i.

Proof. Consider q such that # (q) ≤ 1. We verify

1

n

nX

i=1

u (qi, q−i) =
1

n
# (q) (1− # (q)) ,

1

n

nX

i=1

u (ξ, s−i) ≥ ξ

(
1− ξ − # (q)

(
1−

1

n

))
,

max
x2A

nX

i=1

u (x, q−i) = z

(
1− z − # (q)

(
1−

1

n

))
with z =

1

n+ 1
−
n− 1
2

(
# (q)

n
− ξ
)
.

The rest of the proof is straightforward.

One might also wish to compute magnitudes for strategies that cannot beat the

play, in this case λ∗ < 0. For example, consider Bertrand competition under unit

demand, willingness to pay v and no costs. Then the strategy that comes closest to

beating the play is v
n+1
, its shortcoming is v

n(n+1)
. For symmetric allocations and own

price z we obtain

inf
s2An

Pn
i=1 u (z, s−i)−

Pn
i=1 u (si, s−i)

maxx2A
Pn

i=1 u (x, s−i)−
Pn

i=1 u (si, s−i)
= inf

y<a≤v

{
−

1

n− 1
,
nz − v
(n− 1) v

}
= −

1

n− 1
.

Consider now independent play as modeled in Section 3.3. We analogously define

the magnitude λ∗ of beating the independent play by the largest λ 2 [0, 1] that solves

u
(
ξ,σn−1

)
≥ λmax

x2A
u
(
x, σn−1

)
+ (1− λ) u (σn) for all σ 2 !A.
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So if M0 = {σ 2 !A : maxx2A u (x, σn−1) > u (σn)} 6= ; then

λ∗ = min
σ2M0

u (ξ,σn−1)− u (σn)
maxx2A u (x, σn−1)− u (σn)

.

We verify that the magnitude of beating the independent play is equal to 0 in the

Hawk Dove game setting described in Section 3.3.
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