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1. Introduction

Modeling lack of information is at the center stage of economics. Agents might

not know the previous choice of someone else. Or they might not know the type

of their opponent. Or they might not know their own payoffs.

The concept of perfect Bayesian equilibrium (PBE) forces an agent to specify

precise likelihoods of everything they are uncertain about. However, being uncer-

tain seems to contradict their ability to assign such probabilities. Players might

be ambiguous and not willing or able to specify any probabilities. They might

only be able to specify bounds on what can happen.

In this paper we introduce a solution concept for extensive-form games that does

not force players to formulate priors about what they do not know. Our solution

concept generalizes PBE and hence also allows players to have priors. These two

extreme settings, players with priors and players without probability assessments,

are included in the same model by assuming that each player makes choices using

a set of beliefs. A traditional player is incorporated by having a unique belief.

A player without probability assessments is incorporated by considering a set of

degenerate beliefs, each of which puts all mass on a single event. Intermediate

cases of ambiguity are included too, where a player has a better but not complete

understanding of the environment, by assigning to this player a set of beliefs.

Our solution concept is called perfect compromise equilibrium (PCE). It applies

to extensive-form games of incomplete information where players are allowed to

be ambiguous about what they do not know. As motivated above, ambiguity is

modeled by allowing players to hold multiple beliefs at each of their information

sets. The solution concept is readily defined once we have resolved the following

two issues. How to learn from the past? How to model decision making under

ambiguity?

To capture learning from the past, a set of beliefs at a given information set

has to include the beliefs derived by Bayes’ rule whenever possible. There are no

other constraints on the set of beliefs. This makes our concept flexible. On the

one hand, one can limit attention to the updated beliefs to model a player who

only learns from the past. On the other hand, one can include other beliefs to

take the possibility of mistakes by other players into account. Thus, our concept

bridges the discontinuous jump in PBE, where beliefs are completely arbitrary off

the equilibrium path, but Bayes’ rule pins down a unique belief on the equilibrium

path, even if that equilibrium path is extremely unlikely.

Decision making under ambiguity is modeled as follows. A player strives to find

the best compromise. This is a choice that balances the loss of not making the

optimal decision for each of her beliefs. This criterion collapses to expected utility

maximization if there is only one belief or if there is a dominant action at the

given information set. The concept of best compromise follows the tradition of

minimax regret and is founded on many pillars. It has an axiomatic foundation. It

is close to classic expected utility maximization when there is little ambiguity, in

the sense that all beliefs are similar. It can be used to justify behavior in front of
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people with different preferences. It formalizes a criterion that can be interpreted

as the everyday notion of making a compromise.

Formally, a PCE specifies the action each player chooses at each of her informa-

tion sets, together with a set of beliefs over which decision node she is at within

this information set.

We are particularly interested in modeling players who are extremely ambiguous

and only focus on which states are possible, without assessing their likelihoods.

For instance, it seems beyond any realism to assume that firms conjecture a specific

probability distribution when they think about what demand they will be facing.

Yet it seems plausible that agents might use simple functional forms to put bounds

on their uncertain demand. Modeling situations like this is possible within our

framework by letting the set of priors consist only of degenerate priors. We call

this genuine ambiguity. In particular, PCE can be used instead of PBE when

players have difficulty forming priors. Modeling a game of incomplete information

without using priors comes with numerous advantages in comparison to PBE.

Solutions are often easier to obtain. They are more parsimonious as they do

not change with a prior. Solutions can be more intuitive as they are simple and

depend on observables and not on fictitious distributions. These advantages are

demonstrated in four salient economic examples.

We investigate four examples. We consider Cournot competition with unknown

demand, where firms postulate bounds on the true demand. We consider Bertrand

competition where firms assess lower and upper bounds on the costs of their rivals.

We consider Spence’s job market where employers do not know the cost of educa-

tion and the productivity of workers and they impose bounds on these parameters.

In the fourth example we consider bilateral trade under common value where each

party knows an interval that contains the true value.

These examples highlight the value of the PCE concept in terms of realism, good

compromises, and new insights. All our examples are arguably more realistic

than those found in the literature, as we do not have to confine ourselves to

parametric models of uncertainty or to models with two states (high and low).

Our examples involve strategic decision making under rich uncertainty where the

PBE analysis is intractable. Compromise values are small in the Cournot and

Bertrand competition settings. In these contexts it makes little sense to think

in more detail about which state is really the true one, as payoffs would only be

slightly higher in some states but could be substantially lower in other states. New

insights appear. We find that adding uncertainty makes firms more competitive

under Cournot competition and less competitive under Bertrand competition. In

the separating equilibrium of Spence’s job market signaling game, better educated

workers are not necessarily more productive, unlike in the classic model with two

types (Spence, 1973). In bilateral trade with common value, we find that trade

is possible, as opposed to the famous no-trade theorem for PBE (Milgrom and

Stokey, 1982). Under PCE the possibility that the trading partners have different

valuations leads to trade with positive probability, as ignoring this possibility
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generates losses that the traders want to minimize. Under PBE there is no trade

as the trading partners always agree on the expected valuation of the good.

Related Literature. Our paper contributes to the literature on robustness and

ambiguity in games of incomplete information.

A paper that at a glance may seem very similar to ours is Hanany, Klibanoff and

Mukerji (2018). They also consider general extensive form games with incomplete

information. Their players have smooth ambiguous preferences (see also Klibanoff,

Marinacci and Mukerji, 2005). Specifically, a player combines or aggregates dif-

ferent possible priors into a single belief using a distribution over these priors and

a concave aggregator function. This aggregated belief is updated over time in a

dynamically consistent fashion. Thus, a player has a very detailed understanding

of how the different priors should be weighted. In contrast, the different priors in

our model remain conceptually separated. The inability or unwillingness to com-

bine priors is at the heart of our approach. Compromises are chosen as a way to

resolve the conflict of having different possible understandings of the environment.

In fact, one of the emphases of our paper is that it offers a means to get away

from probability assessments. As such we explain how our approach can handle

a player who wishes to capture uncertainty by assessing a set of possible states,

without any use of priors.

An important ingredient of our solution concept is our use of compromise for

making choices when the true state is unknown. A popular alternative approach

in the literature on ambiguity is maximin preferences (Wald, 1950; Gilboa and

Schmeidler, 1989). These preferences have been brought to simultaneous-move

games with incomplete information and multiple priors by Epstein and Wang

(1996), Kajii and Morris (1997), Kajii and Ui (2005), and Azrieli and Teper (2011).

While this approach can be suitable in applications where players are pessimistic

and care about payoff guarantees in the worst case instead of compromises, it

leads to unintuitive results in our examples. For instance, in Bertand duopoly

with ambiguity about the rival’s cost, maximin utility leads firms to shut down. To

obtain nontrivial results, additional structural assumptions need to be added, such

as assuming knowledge of the mean state. Another approach found in literature is

Knightian uncertainty with incomplete preferences. This has been used by Chiesa

et al. (2015) to model bidding in auctions.

Our idea of best compromise has origins in minimax regret (Savage, 1951) and

connects to approximate optimality. Our optimization criterion differs from min-

imax regret as evaluation occurs at each information set, while minimax regret

traditionally evaluates regret ex-post. Furthermore, PCE retains the strategic

reasoning of PBE, as players have certainty about each others’ strategies. For an

investigation of minimax regret under strategic uncertainty see Linhart and Rad-

ner (1989), and under partial strategic uncertainty see Renou and Schlag (2010).

In simultaneous-move games, PCE can be considered as a generalization of ex-

post Nash equilibrium (Cremer and McLean, 1985). It can be thought of as an

ε-ex-post Nash equilibrium in which the smallest possible value of ε is chosen for
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each player. In the context of ε-Nash equilibrium (Radner, 1980) the value of ε is

interpreted a minimal level of improvement necessary to trigger a deviation. Our

interpretation is different. The value of ε measures the compromise needed to

accommodate all beliefs. In particular, the threshold ε is endogenous in a PCE.

PCE can be interpreted as a robust version of PBE where robustness in the

sense of Huber (1965) means to make choices that also perform well if the model

is slightly misspecified. Being a compromise, our suggested strategies perform

well under each prior given how others make their choices, never doing too badly

relative to what could be achieved under that prior. Stauber (2011) analyzes the

local robustness of PBE to small degrees of ambiguity about player’s beliefs. In

particular, players do not adjust their play to this ambiguity, unlike our paper.

We proceed as follows. In Section 2 we introduce our solution concept. In

Section 3 we illustrate PCE in four self-contained examples. Section 4 concludes.

All proofs are in Appendix A. Some additional examples are in Appendix B.

2. Perfect Compromise Equilibrium

We introduce a solution concept called perfect compromise equilibrium (PCE).

A formal definition is presented in Section 2.1 below. A reader who wishes to be

spared with the formalities and seeks to understand the essence of PCE and its

applicability can jump to Section 3 that presents self-contained examples.

2.1. Formal Setting. Consider a finite extensive-form game described by (N,G,Ω,
Π, u), where N = {1, ..., n} is a set of players, G is a finite game tree, Ω is a finite

set of states, Π = (Π1, ...,Πn) is a profile of sets of priors, where Πi ⊂ ∆(Ω) is a

set of priors of player i, and u = (u1, ..., un) is a profile of payoff functions.

Game tree G describes the order of players’ moves, players’ information sets,

and actions that are available at each information set. It is defined by a set of

linked decision nodes and terminal nodes that form a tree. Each decision node

is assigned three elements: a player i, an information set φi, and a set of actions

available to player i at that information set. Information set φi is a set of all the

decision nodes that player i cannot distinguish. Information sets and action sets

satisfy the standard assumptions of games with perfect recall. Let φ0 be the initial

decision node of the game, let Φi be the set of all information sets of player i for

each i ∈ N , and let T be the set of terminal nodes of the game. Let A(φi) be a

finite set of actions available at an information set φi.

In the spirit of Harsanyi (1967), all incomplete information is captured by a

move of nature at the beginning of the game. Nature moves only once, at the

initial decision node φ0. An action of nature ω is called state and is chosen from

the set of states Ω.

The game terminates after finitely many moves at some terminal node, and

players obtain payoffs. A payoff function of each player i ∈ N specifies the payoff

ui(τ) of player i at each terminal node τ ∈ T .
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A strategy of player i ∈ N prescribes a mixed action si(φi) for each information

set φi ∈ Φi, so si(φi) ∈ ∆(A(φi)). A strategy profile s describes the behavior of

all players throughout the game.

Like in Bayesian games, we specify not only strategies, but also beliefs of the

players at each of their information sets. The crucial difference from a Bayesian

game is that, in our setting, the players may have multiple beliefs in each of their

information sets. For each player i and each an information set φi ∈ Φi, a belief

βi specifies a probability distribution over the decision nodes in φi, so βi ∈ ∆(φi).

Let Bi(φi) be a nonempty set of beliefs that player i holds at information set φi.

We will refer to elements of Bi(φi) as speculated beliefs at φi. With a slight abuse

of notation, let us consider the set of priors of a player i as her speculated beliefs

at node φ0, so Bi(φ0) = Πi. Let B = (B1, ..., BN) be the profile of speculated

beliefs for all players at all the information sets.

Like in PBE, we will require consistency of beliefs. Let φi ∈ Φi. We say that

player i’s information set φ′i is preceding φi if φ′i is the last information set where

player i moved before φi.
1 If player i moves at φi for the very first time, then

φ′i = φ0.

Definition 1. A set of speculated beliefs Bi(φi) at an information set φi is called

consistent under a strategy profile s if Bi(φi) contains every distribution over the

nodes in φi that is derived by Bayes’ rule from some belief β′i that is contained in

the set of speculated beliefs at the preceding information set φ′i, so β′i ∈ Bi(φ
′
i).

A profile B of speculated beliefs is consistent with a strategy profile s if for each

i ∈ N and each φi ∈ Φi the set of speculated beliefs Bi(φi) at φi is consistent

under s.

Note that our definition of consistency does not impose any discipline on the

out-of-equilibrium beliefs. If an information set φi cannot be reached from the pre-

ceding information set φ′i under a given strategy profile s, then every nonempty

set of beliefs at φi is consistent under s. Of course, not every choice of out-of-

equilibrium beliefs can be sensible in applications. This is the very same problem

that emerged in the context of PBE and gave rise to a vast literature on PBE

refinements. This problem is of equally high importance for PCE. However, ad-

dressing this problem would take us away from the main messages of this paper.

Neither the idea of PCE, nor its properties in the examples considered in this

paper change if additional assumptions about out-of-equilibrium beliefs are made.

So, we leave this question for future research.

Next we define how decisions are made at an information set φi. We fix a

strategy profile s and determine how to make a choice at φi, while keeping choices

at all other information sets fixed. The difficulty of making a decision at φi is that

the player does not know which belief in the set of speculated beliefs Bi(φi) should

be used to evaluate the expected payoff. We follow that minimax regret approach.

1Perfect recall implies that there is at most one preceding information set.
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Roughly speaking, the player chooses a compromise action that is never too far

from the best action under each belief in Bi(φi).

Formally, consider a profile (s, B) of strategies and sets of speculated beliefs.

Denote by ūi(xi|φi, s, βi) the expected payoff of player i from choosing a mixed

action xi ∈ ∆(A(φi)) in an information set φi under the speculated belief βi over

the decision nodes in φi, assuming that the play is given by s elsewhere in the

game. The payoff difference

sup
ai∈A(φi)

ūi(ai|φi, s, βi)− ūi(xi|φi, s, βi)

is called player i’s loss from choosing mixed action xi at information set φi given

speculated belief βi. It describes how much better off player i could have been

at this information set given this belief if, instead of choosing xi, she had chosen

the best action, assuming that the actions in all other information sets are pre-

scribed by s. The maximum loss of player i from choosing a mixed action xi in an

information set φi under (s, B) is given by

l(xi|φi, s, B) = sup
βi∈Bi(φi)

(
sup

ai∈A(φi)

ūi(ai|φi, s, βi)− ūi(xi|φi, s, βi)

)
.

So the maximum (supremum) is sought over all speculated beliefs of player i at

φi.

The player making a decision seeks to minimize the maximum loss. Such a

choice is called a best compromise. Formally she chooses

si(φi) ∈ arg min
xi∈∆(A(φi))

l(xi|φi, s, B), (1)

We now formulate our equilibrium concept that is based on the ideas of best

compromises and consistent beliefs.

Definition 2. A profile (s, B) is called a perfect compromise equilibrium if

(a) each player chooses a best compromise in each of her information sets;

(b) profile B of speculated beliefs is consistent under strategy profile s.

Before proceeding any further, let us establish the existence of PCE.

Theorem 1. A perfect compromise equilibrium exists.

The proof is in Appendix A.1.

Remark 1. In some applications, it is unrealistic to assume that players can

choose mixed actions. Our definition of PCE can be easily adjusted if players are

only allowed to use pure actions. In this case, each player minimizes her maximal

loss among her pure actions, so instead of (1) we require

si(φi) ∈ arg min
ai∈A(φi)

l(ai|φi, s, B). (1′)

Remark 2. In applications, there can be a continuum of strategies and states,

and game trees can be infinite. The definition of PCE readily extends to such

settings, but some additional assumptions have to be made to ensure existence.
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2.2. Genuine Ambiguity. We are particularly interested in understanding strate-

gic play under uncertainty without using probabilities. This is possible within the

above framework as we now demonstrate. Consider players who do not use mixed

strategies and who cannot or are unwilling to assess the likelihood of different

states and of decision nodes within information sets. We call this genuine ambi-

guity. Formally, players are limited to pure strategies as outlined in Remark 1,

they can only have degenerate priors, and they can assign only degenerate specu-

lated beliefs to decision nodes in each of their information sets. All our examples

presented in Section 3 deal with genuine ambiguity.

In the presence of genuine ambiguity, it is natural to offer an equivalent repre-

sentation of our concepts that do not involve distributions. There are two small

changes. First, we consider PCE where players are only allowed to choose among

their pure actions. Second, we consider PCE in which all speculated beliefs are

degenerate. Instead of talking about speculated beliefs, we can then talk about

speculated decision nodes. A decision node is called speculated at a given infor-

mation set if the degenerate belief that puts all weight on this node is speculated.

Note that Bayes’ rule applied to a degenerate prior and a pure strategy profile will

generate a degenerate belief at an information set that can be reached. Hence the

consistency requirement given in Definition 1 is well defined.

2.3. Discussion of Perfect Compromise Equilibrium. We highlight some

properties of PCE.

Best Compromise. Our decision making criterion for how to make choices at a

given information set captures the intuitive notion of making a compromise. As

a compromise, the performance should be satisfactory in all potential situations,

as opposed to being best under some and, possibly, very bad under others. The

concept of best compromise identifies the smallest maximal distance from first best

as a measure of how large the compromise has to be. Compromises are valuable

when decisions have to be justified in front of others who have heterogeneous

perceptions about the environment.

The concept of a best compromise follows the tradition of decision making under

minimax regret, thus having an axiomatic underpinning (Milnor, 1954; Stoye,

2011). Traditionally, minimax regret is evaluated ex-post after all uncertainty

is resolved. In contrast, to model a compromise in the face of several beliefs,

we measure loss ex-ante for a given belief. Stoye’s (2011) axioms continue to

hold from this ex-ante viewpoint. Furthermore, our concept retains the strategic

reasoning of PBE, as players know each others’ strategies. This is unlike Linhart

and Radner (1989) who reduce the game to an individual decision problem, where

the behavior of the others is a part of unknown nature.

Clearly, instead of best compromise, any other decision making criterion under

ambiguity could be used for determining choices at information sets. For instance,

the maximin utility criterion can be used to model pessimism or cautiousness, a

world in which the player always anticipates the worst outcome.
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PCE vs PBE. Our definition of PCE generalizes the concept of PBE to games

where some players may be ambiguous about what they do not know. When there

is no ambiguity, so there is a single speculated belief at each information set, then

our setting describes a standard game of incomplete information. In this case, the

loss minimization objective, as described in (2), reduces to the standard utility

maximization objective. So, an action minimizes the maximum loss of a player

if and only if it is a best response. Moreover, whenever there is only a single

speculated belief, the consistency requirement introduced in Definition 1 reduces

to the standard Bayesian consistency of beliefs. Hence, PCE becomes PBE.

The difference between PCE and PBE emerges in models where some players

are ambiguous about the occurrence of an event. The standard PBE approach

forces players to quantify the uncertainty by specifying a unique belief at each

information set, and then assuming that the players optimize with respect to

these beliefs. Our approach sidesteps this issue by letting the players have multiple

beliefs at each information set and find compromises with respect to these beliefs.

Ex-post Nash equilibrium. In simultaneous move games there is a relationship

of PCE to the concept of an ex-post Nash equilibrium. Ex-post Nash equilibria

are profiles that are Nash equilibria in the game in which the state is observed by

all players at the outset of the game. This means that the maximum loss of each

player at her single information set is equal to zero. Consequently, any ex-post

Nash equilibrium is also a PCE. Note, however, that ex-post Nash equilibria often

do not exist.

Dominance. A PCE survives the elimination of strictly dominated strategies, as

we now demonstrate. We say that an action ai ∈ A(φi) at an information set φi
is strictly dominated for player i if there exists a mixed action xi ∈ ∆(A(φi)) such

that player i’s payoff from choosing ai is strictly worse than that from choosing

xi, regardless of the state ω ∈ Ω and of the choices of other players at any of their

information sets. Iterated dominance is defined as usual. After having excluded

actions that were strictly dominated in previous rounds, one checks the dominance

condition w.r.t. the remaining actions of each player. Now observe that if an

action ai at some information set φi is strictly dominated, then it cannot be a

best compromise at this information set. This is because the (mixed) action that

strictly dominates ai will achieve a strictly lower loss for each speculated belief,

and hence its maximal loss will be strictly smaller. Thus, a strictly dominated

action cannot be a part of any PCE. This argument can be iterated, so any iterated

strictly dominated action cannot be a part of any PCE.

3. Examples

We illustrate our solution concept in a few applications that are prominent in

the literature. We consider Cournot and Bertrand duopoly, Spence’s job market

signaling, and bilateral trade with common value. The examples presented in

this section are self-contained as they do not require knowledge of the formalities
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presented in Section 2. Further examples on public good provision and forecasting

can be found in Appendix B.

In the applications that we consider, uncertainty is traditionally incorporated in

a very simple fashion, often only considering two states, high and low. We consider

richer sets of uncertain events in order to capture more realistic uncertainty. In

our examples we specify uncertainty in terms of bounds on what the players do

not know. Probability distributions do not play a role. Players do not have

beliefs. Instead, they speculate about which state is true or about what decision

node within an information set they are at. Moreover, players do not use mixed

strategies. They search among their pure strategies for a best compromise. Thus

we perform a strategic analysis without using probabilities, which is referred to as

genuine ambiguity in Section 2.2.

To maintain an intuitive appeal, we describe the speculation of the players about

what they do not know in terms of what is payoff relevant to them. Thus we avoid

dealing with details included in the description of states and decision nodes that

are not relevant for the players’ decision making.

3.1. Cournot Duopoly with Unknown Demand. We investigate how two

firms compete in quantities when neither firm knows the demand.

There are two firms that produce a homogeneous good. For clarity of exposition,

we assume that there are no costs of production. Each firm i = 1, 2 chooses a

number of units qi ≥ 0 to produce. Choices are made simultaneously. The firms

face an inverse demand function given by P (q1 + q2). Each firm i’s profit is given

by

ui(qi, q−i;P ) = P (qi + q−i)qi, i = 1, 2.

Neither firm knows the inverse demand P , but they know that it belongs to a set

P given as follows. Let

¯
P (q) =

¯
a−

¯
bq and P̄ (q) = ā− b̄q, where ā ≥

¯
a > 0 and ā/b̄ ≥

¯
a/

¯
b > 0.

Let P be the set of inverse demand functions that satisfy

P (q) is continuously differentiable in q,

¯
P (q) ≤ P (q) ≤ P̄ (q) and

¯
P ′(q) ≤ P ′(q) ≤ P̄ ′(q).

(2)

A firm i’s maximum loss of choosing quantity qi when the other firm chooses

quantity q−i is given by

li(qi, q−i) = sup
P∈P

(
sup
q′i≥0

ui(q
′
i, q−i;P )− ui(qi, q−i;P )

)
.

The maximum loss describes how much more profit firm i could have obtained if

it had known the inverse demand P when anticipating the other firm to produce

q−i. Firm i’s best compromise given a choice q∗−i of the other firm is a quantity q∗i
that achieves the lowest maximum loss, so

q∗i ∈ arg min
qi≥0

li(qi, q−i).
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A strategy profile (q∗1, q
∗
2) is a perfect compromise equilibrium if each firm chooses

a best compromise given the choice of the other firm.

Proposition 1. There exists a unique perfect compromise equilibrium. In this

PCE, the strategy profile (q∗1, q
∗
2) is given by

q∗i =
1

3
(√

¯
b+
√
b̄
) ( ¯

a√
¯
b

+
ā√
b̄

)
, i = 1, 2. (3)

The associated maximum losses are

li(q
∗
i , q
∗
−i) =

(
¯
ab̄− ā

¯
b)2

4
¯
bb̄
(√

¯
b+
√
b̄
)2 , i = 1, 2. (4)

The proof is in Appendix A.2.

Let us discuss the strategic concerns underlying the PCE in this game. Each

firm i, when facing unknown inverse demand and deciding about the quantity

to produce, worries about two possible situations. It could be that the inverse

demand is actually very high, so the firm is losing profit by producing too little.

The greatest such loss occurs when the inverse demand is the highest, so P = P̄ .

Alternatively, it could be that the inverse demand is actually very low, so the

firm is losing profit by producing too much. The greatest such loss occurs when

the inverse demand is the lowest, so P =
¯
P . The firm thus chooses the best

compromise q∗i that balances these two losses, assuming that the other firm follows

its equilibrium strategy q∗−i.

Remark 3. It is generally intractable to find a PBE in this game with such a

rich set of possible inverse demand functions. It can only be done under very

specific priors about the inverse demand. For example, PBE can be found if a

prior describes the uncertainty about the parameters of the linear inverse demand

function P (q) = a− bq (Vives, 1984).

Remark 4. Our equilibrium analysis can shed light on how the firms’ behavior

changes in response to increasing uncertainty. For comparative statics, let us

consider as a benchmark a linear inverse demand function P0(q) = a0 − b0q. We

normalize constants a0 and b0 so that the monopoly profit is equal to 1, that is,

sup
q≥0

(a0 − b0q)q =
a2

0

4b0

= 1.

Suppose that there is a small uncertainty. Specifically, for ε > 0 let P (q) satisfy

(2) where

¯
P (q) =

(
1− ε

2

)
a0 −

(
1 +

ε

2

)
b0q and P̄ (q) =

(
1 +

ε

2

)
a0 −

(
1− ε

2

)
b0q.

Denote by qε = (qε1, q
ε
2) the strategies of the PCE as given by Proposition 1. We

then obtain
dqεi
dε

=
2ε

3a0

+O(ε3) > 0.
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So the firms optimally respond to a growing uncertainty about the demand by

increasing their output, and do so at an increasing rate as ε grows. Next, consider

the associated maximum losses as shown in (4). Then

li(q
ε
i , q

ε
−i) = ε2 +O(ε4), i = 1, 2.

So the maximum losses in the PCE increase very slowly as uncertainty increases.

Moreover, if ε = 0.1, then li(q
ε
i , q

ε
−i) ≈ 0.01. So the firms lose no more than about

1% of the maximum profit due to not knowing the demand.

3.2. Bertrand Duopoly with Private Costs. We now consider how two firms

compete in prices when the cost of the rival firm is unknown.

There are two firms that produce a homogeneous good. Each firm i = 1, 2

chooses a price pi. Choices are made simultaneously. The consumers only buy

from the firm that offers a lower price. In particular, the quantity that firm i sells

is given by

qi(pi, p−i) =


Q(pi), if pi < p−i,

Q(pi)/2, if pi = p−i,

0, if pi > p−i,

where Q(p) is the demand function. For clarity of exposition we assume that the

demand function is given by

Q(p) = max

{
a− p
b

, 0

}
The cost of producing qi units is ciqi. Each firm i’s profit is given by

ui(pi, p−i; ci) = (pi − ci)qi(pi, p−i), i = 1, 2.

Each firm i knows her own marginal cost but not that of the other firm, and it

is common knowledge that

c1, c2 ∈ [
¯
c, c̄], where 0 ≤

¯
c ≤ c̄ ≤ a/2.

A firm i’s pricing strategy si(ci) describes its choice of the price given its marginal

cost ci.

For each marginal cost ci, firm i’s maximum loss of choosing a price pi when

facing pricing strategy s−i of the other firm is given by

li(pi, s−i; ci) = sup
c−i∈[

¯
c,c̄]

(
sup
p′i≥0

ui(p
′
i, s−i(c−i); ci)− ui(pi, s−i(c−i); ci)

)
.

The maximum loss describes how much more profit i could have obtained if it had

known the other firm’s marginal cost c−i, anticipating the other firm to follow the

pricing strategy s−i. Firm i’s best compromise given ci is a pricing strategy s∗i (ci)

that achieves the lowest maximum loss for a given strategy s∗−i of the other firm:

s∗i (ci) ∈ arg min
pi≥0

li(pi, s
∗
−i; ci).
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A strategy profile (s∗1, s
∗
2) is a perfect compromise equilibrium if each firm i chooses

a best compromise given its marginal cost ci when facing the strategy s∗−i of the

other firm.

Proposition 2. There exists a unique perfect compromise equilibrium. In this

PCE, the pricing strategies are given by

s∗i (ci) =
1

2

(
a+ ci −

√
(a− c̄)2 + (c̄− ci)2

)
, i = 1, 2. (5)

The associated maximum losses are

li(s
∗
i (ci), s

∗
−i, ci) =

(a− c̄)(c̄− ci)
2

≤ (a− c̄)(c̄−
¯
c)

2
, i = 1, 2. (6)

The proof is in Appendix A.3.

Let us discuss the strategic concerns underlying the PCE in this game. Each

firm i, when deciding about the price pi > ci and facing an unknown cost of

the other firm, worries about two possible situations. It could be that the other

firm chooses a weakly lower price p−i ≤ pi. Thus, firm i could have obtained

more profit by undercutting p−i. The greatest such loss occurs when the other

firm’s price marginally undercuts pi. Alternatively, it could be that the other firm

chooses a higher price, p−i > pi. Thus, unless pi is the profit maximizing price

for the monopoly, firm i is losing profit by charging too little. The greatest such

loss occurs when the other firm’s cost is the highest possible, c̄. The firm thus

chooses the best compromise s∗i (ci) that balances these two losses, assuming that

the other firm follows its equilibrium strategy.

We find that the PCE price s∗i (ci) is strictly increasing in ci and lies strictly

above the marginal cost ci whenever ci < c̄. Moreover, s∗i (c̄) = c̄. So, any sale

with the cost below c̄ leads to a positive profit. The fact that the equilibrium

price cannot not lie above c̄ is intuitive. It is common knowledge that the costs

are at most c̄. So if a firm charges a price above c̄, the other firm would undercut

it. Note also that the largest equilibrium price cannot lie below c̄. This is because

a firm with cost c̄ will never charge a price below c̄.

Note that the lowest equilibrium price s∗i (¯
c) is strictly positive, even if

¯
c = 0.

This is because when the price is very low, then the potential loss due to not

undercutting the other firm is small, while the potential loss due to not setting a

price much higher is large. This has an upward effect on prices.

Remark 5. It is generally intractable to find a PBE in this application under any

reasonable prior, even in this simplest setting with linear demand and constant

marginal costs. The PBE strategy profile for this simplest setting is implicitly

defined by a differential equation with no closed form solution (see Spulber, 1995).

Remark 6. As in Section 3.1, our equilibrium analysis can shed light on how the

firms’ behavior changes in response to increasing uncertainty. For comparative

statics, let us consider as a benchmark marginal cost c0 = a/4 (recall that we

require 0 ≤ ci ≤ a/2, so c0 = a/4 is the midpoint). We normalize the constants
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a and b of the demand function Q(p) = (a − p)/b so that the monopoly profit is

equal to 1, that is,

sup
p≥0

(p− c0)
a− p
b

=
(a− c0)2

4b
= 1.

Suppose that there is a small uncertainty. Specifically, for 0 < ε < 1 let ci ∈ [
¯
c, c̄],

i = 1, 2, where

¯
c =

(
1− ε

2

)
c0 and c̄ =

(
1 +

ε

2

)
c0.

Denote by sε = (sε1, s
ε
2) the PCE strategy profile as given by Proposition 2. We

then obtain
dsεi (ci)

dε
=

(a+ ci − 2c̄)c0

4
√

(a− c̄)2 + (c̄− ci)2
> 0,

because, using our assumptions on the parameters,

a+ ci − 2c̄ ≥ a− 2c̄ = 1− 2
(

1 +
ε

2

)
c0 =

1

4
(2− ε) > 0.

So the firms optimally respond to the growing uncertainty about the demand

by increasing their prices. They become less competitive. Next, consider the

associated maximum losses as shown in (6). Then

li(s
ε
i (ci), s

ε
−i, ci) ≤

3ε

32
− ε2

64
, i = 1, 2.

So the maximum losses are small. For example, if ε = 0.1, then the maximum

losses are bounded by 0.01. So the firms lose no more than about 1% of the

maximum profit due to not knowing the cost of the other firm.

3.3. Job Market Signaling. Here we investigate Spence’s job market signaling

(Spence, 1973) when the worker’s productivity and cost of education are unknown

to the firms.

There is a single worker and two firms. The worker has productivity θ with

θ ∈ [0, 1]. The worker publicly chooses a level of education e, either low (eL) or

high (eH), to signal her productivity to the firms. The cost of low education is

zero. The cost of high education is c with c ≥ 0. The firms observe the worker’s

education level e and simultaneously offer wages w1 and w2. The worker chooses

the better of the two wages. Her payoff is given by

v(w1, w2, e; θ, c) = max{w1, w2} −

{
0, if e = eL,

c, if e = eH .

Each firm i’s payoff is given by

ui(wi, w−i; θ) =


θ − wi, if wi > w−i,

(θ − wi)/2, if wi = w−i,

0, if wi < w−i.

The worker knows her productivity type θ and her cost of high education c. The

firms know neither. They only know that the worker can have any productivity θ

in [0, 1] and that her cost of high education c lies between two linearly decreasing
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functions of θ. Specifically, c is between 1 − bθ and 1 − bθ + δ, where b and δ

are parameters that satisfy 0 ≤ δ ≤ b ≤ 1. Formally, the firms know that (θ, c)

belongs to the set Ω given by

Ω = {(θ, c) : θ ∈ [0, 1] and c ∈ [1− bθ, 1− bθ + δ].} (7)

The worker’s strategy e∗(θ, c) describes her choice of the education level for each

pair (θ, c) ∈ Ω. Each firm i’s strategy w∗i (e) describes its wage offer conditional

on each education level e ∈ {eL, eH}.
Consider how a firm makes inference from the observed level of education of

the worker. This is formalized with the notion of speculated states. These are the

pairs (θ, c) that a firm thinks are possible after observing the education level of

the worker. The set of speculated states is denoted by Si(e). This set is consistent

with the worker’s equilibrium strategy e∗ if it includes all pairs (θ, c) under which

the worker chooses e ∈ {eL, eH}, so (θ, c) ∈ Si(e) if e∗(θ, c) = e.

For each education level e, firm i’s maximum loss of choosing wage wi when the

other firm chooses the wage according to its strategy w∗−i is given by

li(wi, w
∗
−i; e) = sup

(θ,c)∈Si(e)

(
sup
w′i≥0

ui(w
′
i, w

∗
−i(e); θ)− ui(wi, w∗−i(e); θ)

)
.

The maximum loss describes how much more profit firm i could have obtained if it

had known the true productivity and cost of education of the worker, anticipating

that the other firm follows its strategy w∗−i. Firm i’s best compromise given e is a

wage w∗i (e) that achieves the lowest maximum loss for a given strategy w∗−i of the

other firm:

w∗i (e) ∈ arg min
wi≥0

li(wi, w
∗
−i; e). (8)

Observe that the worker has complete information. There is no need for a com-

promise. So, the worker simply chooses a best-response:

e∗(θ, c) ∈ arg max
e∈{eL,eH}

v(w∗1(e), w∗2(e), e; θ, c). (9)

A profile (e∗, w∗1, w
∗
2, S1, S2) of strategies and speculated sets is a perfect com-

promise equilibrium (PCE) if two conditions hold. First, the strategies satisfy (8)

and (9), so each firm i chooses a best compromise, and the worker chooses a best

response to the strategies of the others. Second, the firms’ sets of speculated states

are consistent with the worker’s strategy e∗.

A PCE is pooling if the worker chooses the same level of education for all (θ, c) ∈
Ω. A PCE is separating if the set Ω can be partitioned into two subsets such that

worker types belonging to the same subset choose the same level of education, but

these levels differ between the two subsets.

Proposition 3. (i) There exists a pooling PCE in which the worker chooses low

education, so

e∗(θ, c) = eL for all (θ, c) ∈ Ω,
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and the firms’ wages are given by

w∗i (eH) = w∗i (eL) =
1

2
, i = 1, 2.

After each observed education level e, each firm i’s set of speculated states Si(e)

contains all states.

(ii) If δ ≥ 2b2 − b, then a separating PCE does not exist.

(iii) If δ < 2b2−b, then there exists a separating PCE in which the worker chooses

high education if and only if her cost c is at most 1
2b

(b− δ), so for all (θ, c) ∈ Ω

e∗(θ, c) =

{
eH , if c ≤ 1

2b
(b− δ),

eL, if c > 1
2b

(b− δ),

and the firms’ wages are given by

w∗i (eH) =
1

2
+
b+ δ

4b2
and w∗i (eL) =

δ

2b
+
b+ δ

4b2
, i = 1, 2. (10)

After each observed education level e, each firm i’s set of speculated states Si(e)

contains each state (θ, c) ∈ Ω that satisfies

θ ∈
[
0,
b+ δ

2b2
+
δ

b

]
if e = eL, and θ ∈

[
b+ δ

2b2
, 1

]
if e = eH . (11)

The proof is in Appendix A.4.

Let us discuss the strategic concerns underlying these PCE. Each firm i, when

deciding about the wage offer wi and facing unknown productivity of the worker,

worries about two possible situations. It could be that the productivity is high,

so offering a wage that is marginally greater than that of the competitor would

improve profit. The greatest such loss occurs when the productivity is the highest

possible. Alternatively, it could be that the productivity is low, so offering a wage

that is smaller than the competitor’s would eliminate the loss. The greatest such

loss occurs when the productivity is the lowest possible. The firm thus offers the

best compromise wage that balances these two losses, assuming that the other firm

follows its equilibrium strategy. In equilibrium, both firms offer the same wage,

so each of them has probability 1/2 to hire the worker. Hiring with probability

1/2 is the best compromise between not hiring a productive worker and hiring an

unproductive worker.

An essential detail in the above considerations is that the greatest and smallest

productivities are now endogenous and can depend on the level of education e that

the worker chooses. In the pooling equilibrium, e = eL does not provide any useful

information, so all productivity types are possible. However, in the separating

equilibrium, the firms believe that the productivity belongs to a different interval

when observing a different level of education. For example, if b = 1 and δ = 1/4,

then the firms believe that θ ∈ [0, 7/8] if the education is low, and that θ ∈ [5/8, 1]

if the education is high.

Observe that, among the workers with productivity θ ∈ [5/8, 7/8], some choose

low education, while others choose high education. This overlap is due to the
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richness of the state space. The same productivity type θ can have different costs

of education c that can fall below or above the threshold at which high education

is profitable. Clearly, this result cannot emerge in the traditional setting where

the workers are differentiated only by their productivity.

The parameter δ captures the firms’ uncertainty about the worker’s cost of high

education given her productivity type. As δ goes up, this range of costs increases.

When δ is sufficiently large, education signaling is not very informative. A costly

signal cannot be used to differentiate high and low productivity types, and the

separating PCE does not exist.

3.4. Bilateral Trade with Common Value. We now examine bilateral trade

with common value. In this example we show that trade can occur when traders

follow a PCE. This is in stark contrast to the no-trade theorem under common

values as predicted by PBE (Milgrom and Stokey, 1982).

A seller wants to sell an indivisible good to a buyer. The value v of the good is

the same for each of them. If the good is traded at some price p, then the buyer

obtains v − p and the seller obtains p − v. If the good is not traded, then both

traders obtain zero.2

Neither trader knows v. Before the trade takes place, the traders privately

consults independent experts to obtain some information about v. Each expert

provides an interval of possible values, from the most pessimistic to the most

optimistic assessment of the true value. Specifically, the seller privately learns

that v ∈ [x0, x1] and the buyer privately learns that v ∈ [y0, y1].

The traders commonly know the lower and upper bounds of the value v. These

bounds are normalized to be 0 and 1, so v ∈ [0, 1]. In addition, the traders

commonly know that the experts cannot be wrong, so

v ∈ [x0, x1] ∩ [y0, y1]. (12)

We do not impose constraints on how precise or imprecise the experts’ information

is. We allow [x0, x1] and [y0, y1] to be arbitrary intervals contained in [0, 1] that

satisfy (12).

We consider a take-it-or-leave-it protocol in which the seller is the proposer.

The protocol is as follows. First, the traders observe their private information

[x0, x1] and [y0, y1]. Then the seller asks a price p ∈ [0, 1]. Finally, the buyer

decides whether to accept or to reject the seller’s asked price.

Let us describe the traders’ strategies. Let p∗(x0, x1) be the seller’s asked price

given her information [x0, x1]. Let α∗(p, y0, y1) be the buyer’s decision whether to

accept or to reject the asked price p given the buyer’s private information [y0, y1],

where α∗(p, y0, y1) = 1 means to buy, and α∗(p, y0, y1) = 0 means not to buy.

Next we describe how the buyer makes inference from the price asked by the

seller. This is formalized with the concept of speculated values. These are values

for v that the buyer thinks are possible after he observes the price asked by the

2The same analysis applies if the seller obtains p when the good is sold and v when the good is
not sold.
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seller. Let Vb(p, y0, y1) be the buyer’s set of speculated values when the seller asks

price p. Clearly, the buyer rules out the values outside of [y0, y1], so Vb(p, y0, y1) ⊂
[y0, y1]. But some values in [y0, y1] may be ruled out too, because p = p∗(x0, x1)

depends on x0 and x1, and the buyer knows that v ∈ [x0, x1] ∩ [y0, y1].

The buyer’s maximum loss from his choice α ∈ {0, 1}, given the asked price p

and his set of speculated values Vb(p, y0, y1), is

lb(α; p, y0, y1) = sup
v∈Vb(p,y0,y1)

(
max {v − p, 0} − (v − p)α

)
.

It describes how much more the buyer could have obtained if he knew the true

value v. The seller’s maximum loss of asking price p, given the buyer’s acceptance

strategy α∗, is

ls(p;x0, x1) = sup
(v,y0,y1)∈[0,1]3:
v∈[x0,x1]∩[y0,y1]

(
sup
p′∈[0,1]

(p′ − v)α∗(p′, y0, y1)− (p− v)α∗(p, y0, y1)

)
.

It describes how much more the seller could have obtained if she knew both v and

the buyer’s private information [y0, y1], anticipating that the buyer would follow

his strategy α∗. Each trader’s best compromise is a choice that achieves the lowest

maximum loss for a given strategy of the other trader. A strategy profile (p∗, α∗) is

a perfect compromise equilibrium (PCE) if each trader chooses a best compromise

given the strategy of the other trader.

Proposition 4. A perfect compromise equilibrium is as follows. The seller asks

p∗(x0, x1) = max

{
x0 + x1

2
+

1− x1

4
,
1

2

}
. (13)

If the seller is asks p ≥ 1
2
, then the buyer speculates that v ∈ [max{y0, 2p− 1}, y1]

and accepts this price if and only if

p ≤ y0 + y1

2
.

If the seller asks p < 1
2
, then the buyer speculates that v ∈ {y0} and accepts this

price if and only if p ≤ y0.

The formal proof is in Appendix A.5. Here we sketch the arguments that lead

to this proposition.

Consider first how the buyer makes his choice when the seller asks p. To build

the intuition, let us first assume that the buyer makes no inference from the

value of the asked price. So the buyer speculates that v ∈ [y0, y1] and compares

her maximal losses when buying and not buying the good. The maximal loss of

buying is attained when v = y0, giving the loss of p− y0. The maximal loss of not

buying is attained when v = y1, giving the loss of y1 − p. The best compromise

between these two situations is for the buyer to buy if and only if p ≤ (y0 + y1)/2.

Now consider the inference about v that the buyer makes from the asked price

p. When p ≥ 1/2, the buyer concludes that v cannot be below 2p−1. This weakly

increases the lower bound on v to max{y0, 2p−1}. When 2p−1 ≤ y0, the inference
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from observing p is not useful. So the buyer behaves as described above. When

2p−1 > y0, the maximal loss from buying is larger than that from not buying. So

the buyer does not buy. Notice that 2p−1 > y0 implies p > (y0 +y1)/2, and hence

the rule described above continues to apply. In summary, the buyer behaves as if

she ignores how the seller chooses the price when p ≥ 1/2.

Alternatively, suppose that p < 1/2. This cannot happen in equilibrium, so

the buyer can have any speculated beliefs. Assume that the buyer speculates that

x0 = x1 = y0. So, the buyer speculates that v = y0. Clearly, it is then best to buy

the good if and only if p ≤ y0.

Consider now how the seller chooses the price when anticipating the buyer’s

equilibrium behavior. Observe that p should be at least 1/2. This is because if

p < 1/2, then the buyer accepts p if and only if p ≤ y0. So the seller knows that

she will only sell the good if it its value is above its price. Thus, choosing p < 1/2

is dominated by choosing p = 1.

To understand how a price p ≥ 1/2 should be chosen, consider briefly an alter-

native setting where it is common knowledge that v ∈ [x0, x1]. So the buyer has

the same information as the seller. Then the seller will ask p = (x0 + x1)/2, as

this is the highest price that the buyer is willing to accept, and any higher price

leads to no sale with the same maximal loss.

Now return to our model. Assume that the buyer does not buy at price p. The

maximal loss is attained when the buyer would have bought at a marginally lower

price and the value of the good is x0. So the maximal loss equals p − x0. Now

assume that the buyer buys at price p. The maximal loss is attained when the

buyer is extremely optimistic and believes that v ∈ [y0, y1] = [x1, 1]. This buyer

will also accept the price (x1 + 1)/2. So the maximal loss equals (x1 + 1)/2 − p.
The seller chooses a best compromise price that balances these two losses, and

hence sets p = 1
2
(x0 + x1) + 1

4
(1 − x1). Note that the price asked by the seller

lies above the midpoint of the seller’s interval [x0, x1], due to the possibility of the

extremely optimistic buyer.

Proposition 4 stands in contrast to the no-trade theorem under common values

as predicted by PBE (Milgrom and Stokey, 1982). We observe that trade occurs

in our PCE whenever the median assessment 1
2
(y0 + y1) of the buyer exceeds the

price p∗(x0, x1). The equilibrium price can be seen as an exaggeration of the

seller’s median assessment, because p∗(x0, x1) > 1
2
(x0 + x1) unless x1 = 1. The

trade is possible because the traders cannot rule out the possibility of two opposing

situations: winning and losing from trade. They do not want to miss a winning

opportunity, but also they do not want to lose from trade. They compromise by

choosing their decision thresholds so that they do not lose too much either way.

We hasten to point out that the PCE presented in Proposition 4 is not unique.

For example, there is a no-trade PCE, where the seller always asks p = 1, and

the buyer accepts to buy the good at a price p if and only if p < y0. This

equilibrium relies on a specific out-of-equilibrium speculated belief of the buyer
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that v = x0 = x1 = y0 whenever p is different from 1. So, if the seller deviates to

some price p < 1, either the buyer rejects it, or the seller makes a loss.

4. Conclusion

We introduce a formal methodology to better understand how players deal

with uncertainty in dynamic strategic contexts. We are particularly interested

in modeling players who have an intuitive understanding of uncertainty that can

be expressed in terms of bounds. The general setting looks at players who have

ambiguous preferences that are modeled as multiple priors. Learning occurs by

updating prior by prior using Bayes’ rule whenever possible. Decisions are made

under ambiguity by finding best compromises.

Our objective is to present a solution concept that is as close as possible to

Perfect Bayesian Equilibrium. The idea is to facilitate the understanding and

acceptance of PCE and simplify the interpretation of new insights. This design

objective also allows us to build on the discipline underlying the concept of a PBE.

We identify at least six reasons that motivated us to create this new solu-

tion concept, each of them motivated by contexts where PBE is not adequate.

These reasons are robustness, ambiguity, non-probabilistic reasoning, parsimony,

tractability, and accessibility. We explain each of these in more detail.

Robustness. The PCE can be used to investigate the robustness of a PBE to the

priors of the players in a context where each of the players seeks a strategy that also

performs well for very similar priors. Similarly it can be used to analyze how play

changes for a given PBE when players only have an approximate understanding

of the priors of others.

Ambiguity. Ambiguous preferences have become popular. Our concept allows

to include players with such preferences. The formalism we introduce is not lim-

ited to the use of best compromises as the solution concept. We could have also

inserted any alternative concept for decision making under ambiguity. The most

prominent alternative is maximin utility preferences that leads to a pessimistic

mindset. We prefer the flavor of finding compromises. Compromises seems nec-

essary in a globalizing world where decision making is made in front of growing

audiences and when there is less willingness to base decisions on specific distribu-

tional assumptions.

Non-probabilistic reasoning. Uncertainty per se seems to mean that details are

hard to describe. And yet traditional models focus on two types of workers, high

and low, or assume linear demand functions. Uncertainty seems to preclude that

players agree on likelihoods of events, and yet this is done in PBE. We introduce

PCE to open the door to understanding more realistic uncertainty.

Parsimony. The traditional PBE framework reveals a different solution for

each prior. Such flexibility can be useful to fit data. But flexibility in terms

of a multitude of different answers gives little guidance to those who need to

make choices. One easily loses the big picture if there are many details that

determine what happens. To achieve clear and transparent results, one often
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gives up realism and adapts simplistic uncertainty with only a few types for each

player. In contrast, the PCE concept under genuine ambiguity is by design very

parsimonious. Making best compromises across many different situations allows

to abstract from many details.

Tractability. The usefulness of our solution concept is demonstrated in relevant

economic examples where uncertainty is rich. This richness limits a tractable

analysis of PBE. PCE yields tractable results with simple proofs as players focus

on extreme situations, allowing them to ignore intermediate constellations.

Accessibility. The PCE concept under genuine ambiguity is undemanding and

easy to teach. Uncertainty can be described with bounds. There is no need for

probabilities, and Bayes’ rule can be put back on the shelf.

The common acceptance of priors is dwindling. The literature on decision mak-

ing and game playing under uncertainty has now developed alternative concepts.

We hope to add to this literature. Numerous paths to future research open up in

a search for new insights and for a clearer exposition of existing understanding of

economic and strategic principles.

Appendix A. Proofs.

A.1. Proof of Theorem 1. Let S be the set of strategy profiles. Let B̄ be a

profile of speculated beliefs given as follows. For each i ∈ N and each φi ∈ Φi,

let B̄i(φi) contain all probability distributions over the decision nodes in φi, so

B̄i(φi) = ∆(φi). As follows from Definition 1, B̄ is consistent with every strategy

profile in S. This is because B̄i(φi) always contains every consistent belief at φi,

for all priors and all strategies. We now argue that there exists s̄ ∈ S such that

(s̄, B̄) is a PCE.

Consider an arbitrary s ∈ S. Let Uφi(s) be the negative of player i’s maximum

loss at φi when player i follows her strategy si, so

Uφi(s) = −l(si(φi)|s, B, φi)

= inf
βi∈B̄i(φi)

(
ūi(si(φi)|s, φi, βi)− sup

ai∈A(φi)

ūi(ai|s, φi, βi)

)
. (14)

We now construct an augmented game (Φ,G,Ω, µ, U) as follows. Let Φ be the

set of information sets excluding the initial node φ0, so Φ =
⋃
i∈N Φi. Let each

information set φ ∈ Φ be associated with a different player, so the set of players

is the set of information sets Φ. The game tree G and the set of states Ω remain

unchanged. Let µ be a common prior over the states, and assume that µ has full

support over Ω. Nature moves first by choosing a state ω ∈ Ω according to the

prior µ. Each player φ ∈ Φ moves only once, at her information set φ, by choosing

an action from the set A(φ).

A strategy profile s describes a choice sφ ∈ ∆(A(φ)) of each player φ. The

interim payoff of each player φ ∈ Φ at the information set φ is given by Uφ(s). Let

U = (Uφ)φ∈Φ.
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The augmented game (Φ,G,Ω, µ, U) can be seen as a game of incomplete in-

formation with a nonstandard specification of the players’ payoffs. While in a

standard game the payoffs are specified ex-post at each terminal node, in this

augmented game the payoff Uφ of each player φ ∈ Φ is specified in the interim, at

the information set where the player makes a move. Because each player moves

only once, the specification of the interim payoffs is sufficient to apply the concept

of PBE or sequential equilibrium to the augmented game.

Another nonstandard feature of the augmented game is that each player’s in-

terim payoff Uφ(s) is independent of state ω. This is because by (14) the interim

payoff Uφ(s) is defined as the infimum over all possible beliefs about the decision

nodes in the information set φ. So, the prior µ does not affect the best-response ac-

tions by the players, it only affects the likelihood of reaching different information

sets in the game tree.

Let (s′φ, s−φ) denote the strategy profile where s′φ ∈ ∆(A(φ)) is played by player

φ and s−φ is the profile of strategies at all other players. Observe that maximizing

Uφ(s′φ, s−φ) with respect to player φ’s own decision s′φ ∈ ∆(A(φ)) is the same as

minimizing the maximum loss at φ in the original game. Consequently, if s̄ is a

strategy profile in a sequential equilibrium of the augmented game, then (s̄, B̄)

is a PCE of the original game. The existence of PCE follows from the existence

of sequential equilibrium for finite games. We refer the reader to Chakrabarti

and Topolyan (2016) for the backward-induction proof of existence of sequential

equilibrium that uses interim payoffs at information sets to determine players’

best-response correspondences. �

A.2. Proof of Proposition 1. To prove the existence of a unique PCE, we find

a unique profile of best-compromise strategies and a unique profile of speculated

beliefs that satisfy Definition 1.

First, we find the speculated beliefs. The firms have genuine ambiguity, so the

set of priors Πi of firm i is equal to the set of degenerate beliefs over P . By

Definition 1 and the consistency requirement in PCE, the set Bi(φi) of speculated

beliefs of firm i at its unique information set φi must be equal to the set of priors,

so Bi(φi) = Πi.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that

the quantities and the price are always nonnegative, and then we verify that this

is indeed the case in equilibrium.

Let x∗i (q−i, P ) be a best response strategy of player i given the knowledge of q−i
and the inverse demand function P . The loss of firm i from choosing quantity qi,

given q−i and P , is denoted by ∆ui(qi, q−i;P ) and given by

∆ui(qi, q−i;P ) = P (x∗i (q−i, P ) + q−i)x
∗
i (q−i, P )− P (qi + q−i)qi.

By (2), the marginal revenue of firm i satisfies

¯
P (qi+q−i)+

¯
P ′(qi+q−i)qi ≤ P (qi+q−i)+P ′(qi+q−i)qi ≤ P̄ (qi+q−i)+P̄ ′(qi+q−i)qi.
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Therefore, for given qj and P , the best-response quantity x∗i (q−i, P ) of firm i

always lies between x∗i (q−i, ¯
P ) and x∗i (q−i, P̄ ). While the profit function need not

be concave in general, it is concave when P =
¯
P or when P = P̄ . So the highest

loss will always be attained in one of these two extreme cases:

li(qi, q−i) = sup
P

∆ui(qi, q−i;P ) = max{∆ui(qi, q−i;
¯
P ),∆ui(qi, q−i; P̄ )}.

It is easy to see that the maximum loss is minimized by balancing the two expres-

sions under the maximum:

∆ui(qi, q−i; P̄ ) = ∆ui(qi, q−i;
¯
P ).

Substituting
¯
P and P̄ and simplifying the expressions yields the equation

(ā− b̄q−i)2

4b̄
− (ā− b̄(qi + q−i))qi =

(
¯
a−

¯
bq−i)

2

4
¯
b

− (
¯
a−

¯
b(qi + q−i))qi. (15)

Solving for qi yields the unique best compromise quantity:

q∗i = ¯
a
√
b̄+ ā

√
¯
b

2(
¯
b
√
b̄+ b̄

√
¯
b)
− qj

2
, i = 1, 2.

Solving this pair of equations for (q∗1, q
∗
2), we find (3). It is easy to verify that under

our assumptions, q∗i > 0, and moreover, P (q∗1 + q∗2) ≥
¯
P (q∗1 + q∗2) > 0. Substituting

the solution into (15) yields the maximum loss of each firm (4). �

A.3. Proof of Proposition 2. Similarly to the proof of Proposition A.2, to

prove the existence of a unique PCE, we find a unique profile of best-compromise

strategies and a unique profile of speculated beliefs that satisfy Definition 1.

First, we find the speculated beliefs. The firms have genuine ambiguity, so the

set of priors Πi of firm i is equal to the set of degenerate beliefs over [
¯
c, c̄]2. By

Definition 1 and the consistency requirement in PCE, firm i with cost ci must

have the set Bi(ci) of speculated beliefs equal to the set of priors, so Bi(φi) = Πi.

Next, we find each firm’s equilibrium quantity. For derivations, we assume that

each firm prices at or above marginal cost, and then we verify that this is indeed

the case in equilibrium.

Consider firm i with type ci ∈ [
¯
c, c̄]. Let sm(ci) be the profit-maximizing pricing

strategy if firm i were the monopoly, so sm(ci) = (a + ci)/2. Since we have

assumed that c̄ ≤ a/2, this means that sm(ci) ≥ c̄ for all ci. The monopoly profit

is (a− ci)2/(4b).

Fix the other firm’s strategy s∗−i(c−i) and let p̄ be the maximum price of the

other firm, so p̄ = supc−i∈[
¯
c,c̄] s

∗
−i(c−i). Given the other firm’s cost c−i, and thus
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the price p−i = s∗−i(c−i), firm i’s maximum profit is

u∗i (p−i; ci) = sup
xi≥0

ui(xi, p−i; ci) =


0, if p−i ≤ ci,

(p−i − ci)a−p−ib
, if ci < p−i ≤ sm(ci),

(a−ci)2
4b

, if p−i > sm(ci)

= max

{
0, (p−i − ci)

a− p−i
b

,
(a− ci)2

4b

}
.

Let pi be a price of firm i. We now find the maximum loss of firm i from choosing

pi, given its marginal cost ci and the strategy s∗−i of the other firm. There are

three cases.

First, suppose that p−i ≤ ci ≤ pi. Then firm i cannot make positive profit, so pi
is a best response. Thus, firm i behaves optimally in this case, so the loss is zero.

Second, suppose that ci < p−i ≤ pi. Then firm i could have been better off by

marginally undercutting p−i. Maximizing the loss over p−i ∈ (ci, pi], we obtain

sup
p−i∈(ci,pi)

(u∗i (p−i; ci)− ui(pi, p−i; ci)) =

{
(pi − ci)a−pib , if pi ≤ sm(ci),
(a−ci)2

4b
, if pi > sm(ci).

(16)

Third, suppose that pi < p−i. Then firm i could have made more profit by

increasing its price, so its maximum loss is

sup
p−i∈(pi,p̄]

(u∗i (p−i; ci)− ui(pi, p−i; ci)) = u∗i (p̄;ci)− ui(pi, p̄; ci)

= −(pi − ci)
a− pi
b

+

{
(p̄− ci)a−p̄b , if pi ≤ sm(ci),
(a−ci)2

4b
, if pi > sm(ci).

(17)

To minimize the maximum loss, we need to minimize the greater of the expressions

in (16) and (17). Observe that, by the definition of sm(ci), the right-hand side

in (16) is constant and the right-hand side in (17) is strictly increasing in pi for

pi > sm(ci). So we only need to consider pi ≤ sm(ci). Under this assumption, the

greater of the expressions in (16) and (17) can be simplified to

li(pi, s
∗
−i; ci) = max

{
(pi − ci)

a− pi
b

, (p̄− ci)
a− p̄
b
− (pi − ci)

a− pi
b

}
.

Because one expression is increasing and the other is decreasing in pi for pi ≤
sm(ci), the maximum loss is minimized at the solution of

(pi − ci)
a− pi
b

= (p̄− ci)
a− p̄
b
− (pi − ci)

a− pi
b

. (18)

Solving the above for pi and assigning s∗i (ci) = pi, we obtain (5).

To see that s∗i (ci) ≥ ci, observe that

s∗i (ci)− ci =
1

2

(
a− ci −

√
(a− c̄)2 + (c̄− ci)2

)
≥ 0
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by the triangle inequality and a > c̄ ≥ ci. Moreover, s∗i (ci) > ci when ci < c̄, and

s∗i (c̄) = c̄. Finally, substituting s∗i (ci) into the maximum loss expression in (18)

yields (6). �

A.4. Proof of Proposition 3. First we find the equilibrium wages wH and wL

after the worker’s level of education eH and eL. For each j = L,H, each firm i

has the set of speculated states Si(ej) ⊂ Ω. Let this set be the same for each firm.

Denote this set by S(ej), so S(ej) = S1(ej) = S2(ej).

Let
¯
θj and θ̄j be the lowest and highest productivity levels given ej, so

¯
θj = inf{θ : (θ, c) ∈ S(ej)} and θ̄j = sup{θ : (θ, c) ∈ S(ej)}, j = L,H. (19)

Consider a firm i, some wages wi and w−i, and a state (θ, c). Firm i’s maximum

profit u∗i (w−i; θ) is obtained by marginally outbidding w−i when it is below θ, and

by choosing the wage below w−i and thus giving up the worker if θ ≤ w−i, so

u∗i (w−i; θ) = sup
wi≥0

ui(wi, w−i; θ) = max{θ − w−i, 0}.

Observe that we only need to consider wi and w−i in [
¯
θj, θ̄j]. A wage above θ̄j

is dominated and cannot be a best compromise; a wage below
¯
θj will always be

overbid by the rival’s wage, as there is common knowledge that θ ≥
¯
θj.

Suppose that wi < w−i, so ui(wi, w−i; θ) = 0. Then the largest loss is obtained

when θ is the greatest:

sup
θ:(θ,c)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ)) ≤ max{θ̄j − w−i, 0}.

Next, suppose that wi > w−i, so ui(wi, w−i; θ) = θ − wi. Then the largest loss is

obtained when θ is the smallest:

sup
θ:(θ,c)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ)) = max{θ − w−i, 0} − (θ − wi) ≤ wi −
¯
θj.

Finally, suppose that wi = w−i, so ui(wi, w−i; θ) = (θ − wi)/2. Then

sup
θ:(θ,c)∈S(ej)

(u∗i (w−i; θ)− ui(wi, w−i; θ)) = max{θ − w−i, 0} −
θ − wi

2

≤ max{0, θ̄j − w−i, (wi −
¯
θj)/2}.

The maximum loss li(wi, w−i) is given by the greatest of the three expressions, so

li(wi, w−i) = max{0, θ̄j − w−i, wi −
¯
θj.}.

The wages wi that minimizes the maximum loss satisfies

wi = θ̄j +
¯
θj − w−i, i = 1, 2.

So, we have obtained two equations, one for each i = 1, 2. Solving this pair of

equations for w1 and w2 yields the best compromise w∗i (ej) for each firm i, where

w∗i (ej) =
θ̄j +

¯
θj

2
, i = 1, 2. (20)
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The associated maximum losses are

li(w
∗
i (ej), w

∗
−i(ej)) = w∗i (ej)− ¯

θj. (21)

Next, observe that the worker operates under complete information. Given each

choice of ej, she anticipates the wages wj = w∗1(ej) = w∗2(ej), j ∈ {L,H}. So,

given a state (θ, c), the worker chooses e = eH if and only if3

wH − c(θ) ≥ wL.

Recall that c(θ) is strictly decreasing, and denote by c−1 its inverse. Then, the

worker chooses e = eH if and only if her type θ satisfies

θ ≥ c−1(wH − wL).

Pooling PCE. If wH ≤ wL, then every type chooses low level of education eL, so

the equilibrium is pooling. After observing e = eL, the consistent set of speculated

states S(eL) is thus the entire set of states, so S(eL) = Ω. By (7), the highest and

lowest θ in S(eL) are θ̄L = 1 and
¯
θL = 0. By (20), we obtain the equilibrium wages

wi(eL) = 1/2. After observing an out-of-equilibrium education e = eH , the set of

speculated states S(eH) must induce the wage w∗i (eH) ≤ w∗i (eL). In particular, we

can assume S(eH) = Ω, and thus w∗i (eH) = 1/2.

Substituting the wage of w∗i (e) = 1/2 and the lower bound productivity
¯
θL = 0

into (21), we obtain the maximum loss for each firm i,

li(w
∗
i (ej), w

∗
−i; ej) =

1

2
, i = 1, 2, j = L,H.

Separating PCE. Consider now wH > wL, so that the worker with cost c ≤
wH − wL chooses high education. Let

S(eL) = {(θ, c) ∈ Ω : c > wH−wL} and S(eH) = {(θ, c) ∈ Ω : c(θ) ≤ wH−wL}

be the sets of speculated beliefs of each firm when the level of education is eL
and eH , respectively. So, S(eL) and S(eH) contain all pairs (θ, c) such that low

and high education is chosen, respectively. These sets thus satisfy the consistency

requirement (Definition 1).

By (7) and (19), the highest and lowest θ in S(eH) are given by

θ̄H = 1 and
¯
θH =

1− wH + wL

b
. (22)

Similarly, the highest and lowest θ in S(eL) are given by

θ̄L =
1 + δ − wH + wL

b
and

¯
θL = 0. (23)

From (20), we have

wH =
θ̄H +

¯
θH

2
and wL =

θ̄L +
¯
θL

2
. (24)

3The tie breaking is arbitrary, because the set of types is a continuum.
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Solving the system of six equations in (22), (23), and (24), with six unknowns

(wH , wL, θ̄H ,
¯
θH , θ̄L, and

¯
θL), we obtain the equilibrium wages and the bounds

on the productivity types as shown in (10) and (11).

Observe that the lowest possible cost of high education is inf{c : (θ, c) ∈ Ω} =

1− b. Therefore, there exist states (θ, c) where high education eH is chosen if and

only if wH − wL > 1− b. Substituting our solution for wH and wL given by (10),

we obtain that wH − wL > 1− b if and only if

δ < 2b2 − b.

This condition is thus necessary and sufficient for the existence of separating PCE.

Finally, substituting the wage wH and the productivity lower bound
¯
θH into

(21), we obtain firm i’s maximum loss when e = eH ,

li(w
∗
i (eH), w∗−i(eH); eH) = wH −

¯
θH =

1

2
− b+ δ

4b2
.

Substituting the wage wL and the productivity lower bound
¯
θL into (21), we obtain

the maximum loss when e = eL,

li(w
∗
i (eL), w∗−i(eL); eL) = wL −

¯
θL =

δ

2b
+
b+ δ

4b2
. �

A.5. Proof of Proposition 4. Consider how a buyer who knows that v is in

[y0, y1] reacts when the seller asks p. Suppose that p < 1/2. Then the buyer

speculates that v in {y0}. This is consistent with the strategy of the seller as

p < 1/2 is out of equilibrium. Given this speculation, accepting p if and only if

p ≤ y0 is a best compromise.

Now suppose that p ≥ 1/2. The largest interval [x0, x1] ⊂ [0, 1] that satisfies

(13) is [2p− 1, 1]. So the buyer concludes that

v ∈ Vb(p, y0, y1) = [y0, y1] ∩ [2p− 1, 1] = [max{y0, 2p− 1}, y1].

Given this information about the set of possible values, the buyer now compares

her maximum losses when accepting (α = 1) and rejecting (α = 0) the price p.

The maximum loss from rejecting p is

lb(0; p, y0, y1) = sup
v∈[max{y0,2p−1},y1]

(v − p) = y1 − p.

The maximum loss from accepting p is

lb(1; p, y0, y1) = sup
v∈[max{y0,2p−1},y1]

(p− v) = min{p− y0, 1− p}.

Because y1 ≤ 1, it is easy to verify that lb(0; p, y0, y1) ≥ lb(1; p, y0, y1) if and only if

p ≤ 1
2
(y0 +y1). Thus, it is a best compromise to buy the good when p ≤ 1

2
(y0 +y1)

and not to buy it otherwise.

Let us consider the first stage of the game. Anticipating the buyer’s equilibrium

behavior α∗, the seller chooses a price that minimizes his maximal loss. Observe

that choosing a price p < 1/2 is dominated by p = 1/2. This is because when
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p < 1/2, the buyer accepts p if and only if the value v is guaranteed to be at least

as high as the price p. In this case, the seller’s payoff cannot be positive.

Let p ≥ 1/2. Suppose first that p > 1
2
(y0 + y1) > v. So p is rejected, but it

would be optimal to reduce the price so that the buyer accepts it, specifically, to

ask p′ = (y0 + y1)/2, and thus gain p′ − v. The supremum of this loss is given by

sup
(v,y0,y1): p> 1

2
(y0+y1)>v,

v∈[x0,x1]∩[y0,y1]

(
y0 + y1

2
− v
)

= p− x0.

Second, suppose that p ≤ 1
2
(y0 +y1) < v. So p is accepted, but it would be optimal

not to sell, and thus gain v − p. The supremum of this loss is given by

sup
(v,y0,y1): p≤ 1

2
(y0+y1)<v,

v∈[x0,x1]∩[y0,y1]

(v − p) = x1 − p.

Third, suppose that p ≤ 1
2
(y0 + y1) and v ≤ 1

2
(y0 + y1). So p is accepted, but it

would be optimal to sell at a higher price, specifically, at p′ = 1
2
(y0 + y1), and thus

gain p′ − p. The supremum of this loss is given by

sup
(v,y0,y1): p,v≤ 1

2
(y0+y1),

v∈[x0,x1]∩[y0,y1]

(
y0 + y1

2
− p
)

=
x1 + 1

2
− p.

Finally, suppose that p > 1
2
(y0 + y1) and v ≥ 1

2
(y0 + y1). So, p is rejected, but any

price p′ > v would have been rejected too, so the loss is zero in this case.

The maximum loss associated with the price p ≥ 1/2 is the largest of the four

losses computed above, so

ls(p;x0, x1) = max

{
p− x0, x1 − p,

x1 + 1

2
− p, 0

}
= max

{
p− x0,

x1 + 1

2
− p
}
.

A best compromise price minimizes the maximum loss ls(p;x0, x1) among all prices

p ≥ 1/2, leading to the seller’s equilibrium strategy (13). �

Appendix B (For Online Publication)

In this appendix we analyze two additional examples: public good provision

and forecasting.

B.1. Public Good Provision. Here we investigate the provision of a public good

under genuine ambiguity. We assume that each beneficiary knows her own value

of the public good, but not those of the others.

There are n agents, each has a private value vi ∈ [0, v̄] for the public good.

Each agent i commits to contribute at most xi ∈ [0, v̄] in case the public good is

provided. Agents make their commitments simultaneously.

The cost of providing the public good is c > 0. We assume that this cost is

relatively small, specifically,

c ≤ 1
2
(n− 1)v̄. (25)
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This assumption simplifies the exposition. The complementary case can also be

easily analysed.

The payoffs are as follows. If the sum of committed contributions does not cover

the cost, so
∑n

i=1 xi < c, then the public good is not provided, and each agent i

obtains zero payoff. Otherwise, if
∑n

i=1 xi ≥ c, then the public good is provided,

and each agent i obtains the payoff

vi − ti(x),

where ti(x) is the final transfer of agent i that depends on the profile of committed

contributions x = (x1, ..., xn). For all x such that
∑n

i=1 xi ≥ c, the transfers ti(x)

must satisfy:

(a) ti(x) ≤ xi for each i, so no agent pays more than her committed contribution,

(b)
∑n

i=1 ti(x) ≥ c, so the payments cover the cost of the public good;

(c) t = (t1, ..., tn) is symmetric, so the agents are treated ex-ante equally.

We compare three simple transfer rules that determine payments whenever the

good is provided.

(i) Pay-as-you-bid rule. Each agent pays what she commits to contribute, so

ti(x) = xi. (26)

(ii) Proportional rule. Each agent pays proportionally to her commitment, so

ti(x) =
cxi∑n
j=1 xj

. (27)

(iii) Additive rule. Each agent pays the equal share c/n plus the difference between

her commitment and the average commitment, so

ti(x) =
c

n
+ xi −

1

n

∑n

j=1
xj. (28)

Let si(vi) be a strategy of agent i, so xi = si(vi) specifies the committed con-

tribution of agent i whose private value is vi. We restrict attention to strategies

that satisfy the following assumption.

Strategies si are continuous, strictly increasing, and

si(v) = sj(v) for all i, j = 1, ..., n and all v ∈ [0, v̄].
(29)

We will measure the inefficiency of a strategy profile s by the maximum welfare

loss as compared to to the complete information case. Our measure is denoted by

L(s) and is given by

L(s) = sup
(v1,...,vn)∈[0,v̄]n


max{0,

∑
i vi − c}, if

∑
i si(vi) < c,∑

i ti(si(vi))− c, if
∑

i si(vi) ≥ c and
∑

i vi ≥ c,∑
i ti(si(vi))−

∑
i vi, if

∑
i si(vi) ≥ c and

∑
i vi < c.

The first case describes the loss when the public good is not provided. The second

case describes the loss when the public good is provided with the total payment

of
∑

i ti(si(vi)), but it would have been best to provide it with the total payment

equal to c. The third case describes the loss when the public good is provided with
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the total payment of
∑

i ti(si(vi)), but it would have been best not to provide it.

Note that the second case has zero loss under the proportional and additive rules.

This is because under these rules the total payment is always equal to c whenever

the good is provided. Also note that the third case has zero loss if the agents do

not commit to contribute more than their values, so si(vi) ≤ vi for each i.

Proposition 5. For each of the three transfer rules the is a unique PCE strategy

profile s∗ = (s∗1, ..., s
∗
n) that satisfies Assumption (29). We present the strategies

together with the associated welfare losses. For each i = 1, ..., n and each vi ∈ [0, v̄],

(i) if ti(x) is the pay-as-you-bid rule, then

s∗i (vi) =
vi
2

and L(s∗) = max
{
c,
nv̄

2
− c
}

;

(ii) if ti(x) is the proportional rule, then

s∗i (vi) =
vi
2
− c+

1

2

√
v2
i + 4c2 and L(s∗) =

n

n+ 1
c;

(iii) if ti(x) is the additive rule, then

s∗i (vi) =
n

2n− 1
vi and L(s∗) =

n− 1

n
c.

Note that max
{
c, nv̄

2
− c
}
> n

n+1
c > n−1

n
c. So, the additive rule is the most

efficient among these three transfer rules.

Proof. We prove Proposition 5 for the proportional transfer rule given by (27),

so we derive part (ii). The proof of parts (i) and (iii) for the other two rules is

analogous but easier, and thus omitted.

Let us first derive an agent i’s best compromise strategy s∗i . Agent i who chooses

xi worries about two possible situations. It could be that the total contribution is

marginally below c, so
∑

j xj = c− ε for a small ε > 0. The good is not provided,

but had i contributed ε more it would have been provided. As ε → 0, agent i’s

loss is max{vi − xi, 0}.
Alternatively, it could be that all other agents contribute enough to cover c, so∑
j 6=i xj ≥ c. Thus the agent could have contributed nothing and still received

the good. In this case the loss is the amount of contribution, ti(x) = (cxi)/
∑

j xj.

This loss is maximized when the other agents’ contributions exactly equal to the

cost, so
∑

j 6=i xj = c. This loss is given by

t∗i (x) =
cxi

xi +
∑

j 6=i xj
=

cxi
xi + c

.

The loss in the first case is weakly decreasing and the loss in the second case is

strictly increasing in xi. To find xi that minimizes the maximum loss, we solve

the equation

max{vi − xi, 0} =
cxi
xi + c

for xi. Denote the solution by s∗i (vi). It is easy to verify that it is as given in part

(ii) of the statement of the proposition.
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The above argument requires that there exist values vj ∈ [0, v̄] such that∑
j 6=i s

∗
j(vj) = c. Observe that s∗i (0) = 0 and s∗i (vi) is increasing in vi. So, we

only need to verify that
∑

j 6=i s
∗
j(v̄) ≥ c. This inequality holds under condition

(25).

It remains to determine the maximum welfare loss L(s∗). Note that whenever

the good is provided,
∑

i ti(s
∗
i (vi)) = c by construction. So, the maximum welfare

loss is given by the maximum surplus lost when the good is not provided,

L(s) = sup
(v1,...,vn)∈[0,v̄]n

max
{

0,
∑

i
vi − c

}
subject to

∑
i
s∗i (vi) < c.

As s∗i (vi) is increasing in vi, the constraint must be binding. Moreover, it is easy

to verify that s∗i (vi) is convex in vi. Thus, by Jensen’s inequality we have∑
i
s∗i (vi) ≥ ns∗i

(
1

n

∑
i

vi

)
.

So the maximum is attained for v1 = ... = vn = z for z ∈ [0, v̄] such that nsi(z) = c.

Solving the equation

n

(
z

2
− c+

1

2

√
z2 + 4c2

)
= c

for z yields

z =
2n+ 1

n(n+ 1)
c.

So

L(s∗) = nz − c =
2n+ 1

n+ 1
c− c =

n

n+ 1
c.

�

B.2. Forecasting. Here we consider forecasting by a single agent of a random

variable based on a noisy signal. In this example we illustrate how noise influences

learning when the agent makes best compromise choices.

Formally, consider an agent who has to forecast a random variable θ that belongs

to [0, 1]. The agent’s payoff is the quadratic loss:

u(a, θ) = −(a− θ)2.

Before making a forecast, the agent observes a noisy signal z drawn from some

distribution conditional on θ.

We analyze two variations of this model. In one variation, the agent knows how

the noisy signal z is generated but she is uncertain about the distribution of the

fundamental variable θ. In the other variation, the agent knows the distribution

of θ but she is uncertain about the signal generating process. In addition, at the

end we deal with the case where the agent is uncertain about both aspects.

B.2.1. Unknown Distribution of Variable θ. Here we are interested in how to fore-

cast a random variable with known mean based on a noisy signal with a known

distribution.
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Suppose that the agent does not know the distribution F of θ. She only knows

the mean of this distribution, denoted by θ0. We allow for any such distribution

F that admits a density f such that δ ≤ f(θ) ≤ 1/δ for some δ ∈ (0, 1). This

assumption excludes holes in the support and point masses. The parameter δ can

be interpreted as a lower bound on the degree of dispersion of θ. The set of such

distributions is given by

Fδ = {F ∈ ∆([0, 1]) : EF [θ] = θ0 and δ ≤ f(θ) ≤ 1/δ for all θ ∈ [0, 1]} .

The agent can condition her forecast on a noisy signal z about θ. The signal

generating process is known and given by the conditional probability distribution

Gε(z|θ) with a parameter ε ∈ [0, 1] specified as follows. Signal z reveals the true

value θ with probability 1− ε and is drawn uniformly from [0, 1] with probability

ε, so

Gε(z|θ) =

{
εz, if z < θ,

1− ε+ εz, if z ≥ θ.
(30)

Had the agent known the distribution F ∈ Fδ, she could have formed a belief

about θ conditional on the signal z. Let EF,Gε [·|z] denote the conditional mean

under this belief.

The maximum loss of a forecast a ∈ [0, 1] given a signal z ∈ [0, 1] is

l(a; z) = sup
F∈Fδ

(
sup
a′∈[0,1]

EF,Gε [−(a′ − θ)2|z]− EF,Gε [−(a− θ)2|z]

)
.

A best compromise is a forecast a∗(z) that achieves the smallest maximum loss,

so

a∗(z) ∈ arg min
a∈[0,1]

l(a; z).

This problem can be embedded in our formal setting as described in Section 2.

A state is a pair (θ, z) ∈ [0, 1]2, so the set of states is Ω = [0, 1]2. The set of priors

consists of all pairs (F,G) such that F ∈ Fδ and G is given by (30). The set of

speculated beliefs of the agent who observes z is the set of posteriors derived from

the priors conditional on z.

Proposition 6. The agent’s best compromise is

a∗(z) = (1− λ)z + λθ0,

where

λ =
ε

2

(
δ

1− ε(1− δ)
+

1

δ + ε(1− δ)

)
.

The proof is presented at the end of this subsection.

Let us present some intuition behind Proposition 6. Due to the quadratic

penalty of making inaccurate forecasts, the loss of a forecast is equal to its distance

from the expected mean conditional on the signal. The forecaster is worried about

two possible situations, namely, when this conditional mean is high and when it

is low. Consequently, the best compromise involves a forecast at the midpoint of
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these two extreme conditional means. Solving for this midpoint yields the formu-

lae given in the statement of the proposition. In particular, the best compromise

forecast lies between the ex-ante mean θ0 and the signal z.

Note that the agent’s best compromise forecast depends on the precision ε of

her signal and on the degree of the dispersion δ of the variable of interest. We show

how each of these two parameters independently influences the best compromise

forecast.

Fix the degree of dispersion δ. When the agent’s signal is not very noisy, then

her forecast is close to the signal. This is because a∗ is continuous in ε and

limε→0 a
∗(z) = z. When the signal is very noisy, then her prediction is close to the

ex-ante mean, as limε→1 a
∗(z) = θ0.

Now we fix the precision ε of the noise and vary the bound δ on the degree of

dispersion of θ. As we relax the constraints on F imposed by δ, we obtain that the

forecast approximates the midpoint between θ0 and z. Formally, limδ→0 a
∗(z) =

(θ0 + z)/2. When δ is small, on the one hand, it could that F has very high

dispersion, thus making the signal extremely valuable. On the other hand, it

could that F has very low dispersion, in which case the signal has very little

value. The forecast seeks a best compromise between these two situations and

selects the midpoint.

Note that the above analysis and discussion reveals a discontinuity in the fore-

cast a∗ at ε = δ = 0.

We now prove Proposition 6. To do this, we first present a simple lemma on

how the loss of a forecast is computed.

Lemma 1. l(a; z) = supF∈Fδ(a− EF,Gε [θ|z])2.

The intuition is as follows. The variance of θ conditional on a signal z enters

the payoffs additively, and thus cancels out when computing the loss. As a result,

the maximum loss l(a; z) is simply the maximum quadratic distance between a

forecast a and the mean value of θ conditional on z.

Proof of Lemma 1. Fix Gε. Let āF (z) = EF,Gε [θ|z]. Observe that

āF (z) ∈ arg max
a′∈[0,1]

EF,Gε [−(a′ − θ)2|z]. (31)

So, we have

sup
a′∈[0,1]

EF,Gε [−(a′−θ)2|z]−EF,Gε [−(a−θ)2|z] = EF,Gε [−(āF (z)−θ)2 +(a−θ)2|z]

= EF,Gε [(a− āF (z))(a+ āF (z)− 2θ)|z] = (a− āF (z))2,

where the first equality is by (31) and the last equality is by EF,Gε [θ|z] = āF (z).

Thus,

l(a; z) = sup
F∈Fδ

(a− āF (z))2 = sup
F∈Fδ

(a− EF,Gε [θ|z])2. �

Proof of Proposition 6. Different distributions F ∈ Fδ induce different conditional

means EF,Gε [θ|z]. Let H(z) and L(z) be the highest and lowest conditional means,
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respectively, so

H(z) = sup
F∈Fδ

EF,Gε [θ|z] and L(z) = inf
F∈Fδ

EF,Gε [θ|z]. (32)

The loss of a forecast a given a signal z is

l(a; z) = sup
F∈Fδ

(a− EF,Gε [θ|z])2 = max
{

(a−H(z))2, (a− L(z))2
}

where the first equality is by Lemma 1, and the last equality is by the convexity

of the expression. Thus, the best compromise forecast is the midpoint between

the highest and lowest conditional means, so

a∗(z) = inf
a∈[0,1]

l(a; z) =
1

2
(H(z) + L(z)) .

It remains to find H(z) and L(z). Suppose that z ≥ θ0. Observe that

EF,Gε [θ|z] =
(1− ε)f(z)z + ε

∫ 1

0
θf(θ)dθ

(1− ε)f(z) + ε
∫ 1

0
f(θ)dθ

=
(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

is increasing in f(z). Using the assumption that f(z) ≤ 1/δ, we have

H(z) = sup
F∈Fδ

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε
=

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

∣∣∣∣
f(z)=1/δ

=
(1− ε)z + εδθ0

1− ε+ εδ
.

Using the assumption that f(z) ≥ δ, we have

L(z) = inf
F∈Fδ

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε
=

(1− ε)f(z)z + εθ0

(1− ε)f(z) + ε

∣∣∣∣
f(z)=δ

=
(1− ε)δz + εθ0

(1− ε)δ + ε
.

Analogously, for z ≤ θ0 we obtain H(z) = (1−ε)δz+εθ0
(1−ε)δ+ε and L(z) = (1−ε)z+εδθ0

1−ε+εδ . Thus

we obtain

a∗(z) =
1

2
(H(z) + L(z)) =

1

2

(
(1− ε)z + εδθ0

1− ε+ εδ
+

(1− ε)δz + εθ0

(1− ε)δ + ε

)
. �

B.2.2. Unknown Distribution of Signal z. Here we are interested in how to forecast

a random variable with a known distribution after receiving a noisy signal that

has an unknown distribution.

Suppose that the agent knows the distribution F of θ, but is uncertain about

how the noisy signal z is generated. The following assumptions are made about

this signal. The signal z is known to be not too far from the true value of θ, where

a parameter δ > 0 describes the maximal distance. So δ can also be interpreted as

the precision of the signal. Let y = z − θ be called the noise. So it is known that

|y| ≤ δ. The distribution of the noise y has a certain and an uncertain component.

Let ε ∈ [0, 1] be a known parameter. With probability 1− ε the noise y is drawn

from a known distribution G0 and with probability ε it is drawn from an unknown

distribution G1. So ε measures how uncertain the agent is about how the noise

is generated. Given the support restrictions on y, it follows that G0 and G1 both

have support contained in [−δ, δ]. Let Gδ be the set of all distributions of y that

satisfy the above description.
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Let EF,Gδ,ε[·|z] denote the conditional mean of θ given z for Gδ ∈ Gδ. The

maximum loss associated with a forecast a ∈ [0, 1] given a signal z ∈ [0, 1] is

calculated as in Section B.2.1, so

l(a; z) = sup
Gδ∈Gδ

(
sup
a′∈[0,1]

EF,Gδ,ε[−(a′ − θ)2|z]− EF,Gδ,ε[−(a− θ)2|z]

)
.

Let H(z) and L(z) be the highest and lowest conditional means, so

H(z) = sup
Gδ∈Gδ

EF,Gδ,ε[θ|z] and L(z) = inf
Gδ∈Gδ

EF,Gδ,ε[θ|z].

It is straightforward to verify that

H(z) = sup
x∈[−δ,δ]

εf(z − x)(z − x) + (1− ε)
∫ δ
−δ(z − y)f(z − y)dG0(y)

εf(z − x) + (1− ε)
∫ δ
−δ f(z − y)dG0(y)

,

with an analogous expression for L(z). We obtain the following result.

Proposition 7. The agent’s best compromise is

a∗(z) =
1

2
(H(z) + L(z)) .

The proof is analogous to that of Proposition 6 and thus omitted.

Just like in Section B.2.1, the best compromise is the midpoint between the

highest and lowest conditional means. The agent’s best compromise forecast de-

pends on the precision δ of her signal, as well as on the degree ε of her uncertainty.

We show how each of these two parameters independently influences the best com-

promise forecast.

Fix the degree of uncertainty ε. If the signal is very precise in the sense that δ is

very small, then each of the two extreme conditional means are close to z. Hence,

the best compromise forecast will also be close to z. Formally, limδ→0 a
∗(z) = z.

Fix the precision δ of the signal. As the degree of uncertainty ε vanishes, both

extreme conditional means converge to the conditional mean under the benchmark

distribution G0. Formally, limε→0 a
∗(z) = EF,G0,0[θ|z]. For instance, if G0 is the

uniform distribution, then the best compromise forecast converges to the expected

value of θ conditional on θ being within δ of the signal.

As the degree of uncertainty ε becomes large, the role of the benchmark G0

diminishes and almost any noise within [−δ, δ] becomes possible. When ε = 1, it

could be that G1 puts all mass on −δ, in which case EF,Gδ,ε[θ|z] = z + δ. This is

the highest conditional mean given z, so H(z) = z + δ. It could also be that G1

puts all mass on δ, in which case EF,Gδ,ε[θ|z] = z−δ. This is the lowest conditional

mean given z, so L(z) = z − δ. Consequently, the best compromise forecast is

close to the signal z when the agent is very uncertain about how z is generated.

Formally, a∗(z)→ z as ε→ 1.

Note that the distribution F of the underlying variable of interest plays no role

when the degree of uncertainty is extreme, so ε = 1. Consequently, we obtain



36 SCHLAG AND ZAPECHELNYUK

that if the agent knows neither F nor the distribution of the noise, then the best

compromise forecast is to choose the signal.
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