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Abstract

We use an experiment to study whether market selection can reduce anoma-

lous behaviour in games. In different treatments, we employ two alternative

mechanisms, the random mechanism and the auction mechanism, to allocate

the participation rights to the red hat puzzle game, a well-known logical rea-

soning problem. Compared to the random mechanism, the auction mechanism

significantly reduces deviations from the equilibrium play in the red hat puz-

zle game. Our findings show that under carefully designed incentives, market

competition can indeed reduce anomalous behaviour in games.
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1 Introduction

Anomalous behaviour in experimental game-theory suggests that people are less than

fully rational. People are susceptible to psychological biases (e.g., Rabin, 1998; Con-

lisk, 1996; DellaVigna, 2009; Gabaix, 2017) and are not always able to perform the

types of deductive reasoning demanded by the equilibrium solution (e.g., Crawford

et al., 2013).1 This might not be surprising to economists who recognise the limits

of individual rationality in their day-to-day interactions, even when this is not always

reflected in their professional work (Fehr and Tyran, 2005). Yet, it is not immediately

obvious whether individual level bounded rationality necessarily falsifies the applica-

bility of models that assume fully rational players.2

Markets are often used to allocate the rights (e.g., permits, licences, contracts) for

performing the types of economic tasks modelled in games (i.e., situations involving

strategic interactions)—the market selects players into the game.3 A long-standing

convention in economics is that markets divert resources to where they are valued the

most. If the expected payoffs from the game are higher for the rational players relative

to their less rational counterparts, then markets should result in the allocation of

participation rights (i.e., the rights to play the game) to the former. Hence, behaviour

in the game may be well approximated by models assuming fully rational players even

when this is clearly not the case at the population level.4

However, it is not clear whether the above logic will naturally hold. Evidence

from the economic and psychological literature suggest that human decision-makers

are susceptible to a range of cognitive biases. A prominent example is focusing fail-

ures (e.g., Tor and Bazerman, 2003; Idson et al., 2004) such as when players fail to

realise how their market behaviour should depend on their expected payoffs from

the game. Even if all players anchor their market behaviour on the game, the less

rational players may exhibit higher degrees of over-confidence (e.g., Camerer and Lo-

vallo, 1999; Hoelzl and Rustichini, 2005) with respect to the expected payoffs from

1Where possible, we prefer to direct the reader to reviews of the established literature. Also, see
Crawford (2013), Harstad and Selten (2013) and Rabin (2013) for discussions as to how bounded
rationality can be incorporated into economic theory.

2Some economists such as Aumann (1985) take the “instrumental view” that the purpose of theory
is to contribute to our comprehension of knowledge. Whilst we do not disagree with this view, we
believe that it is also important to ask whether theory matches actual behaviour.

3Economists often build simple models to focus on the main economic interaction of interest. In-
deed, the map paradox (Carroll, 1894) illustrates why a simpler model is sometimes more useful.
Markets here can be interpreted as some un-modelled pre-game stage which determines players’ par-
ticipation into the game. This pre-game stage is irrelevant in equilibrium if all players are assumed to
be fully rational and the selection outcome does not affect behaviour in the game.

4Inversely, markets may exacerbate the influence of the less rational players if their expected payoffs
from the game are higher.
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the game. Finally, people are also vulnerable to probability inference errors (e.g.,

Tversky and Kahneman, 1974). As such, it is unclear whether people’s willingness to

pay—to enter the game—will reflect their expected payoffs from the game.

In many economic situations, people’s behaviour—and consequently, their ex-

pected payoffs from the game—depend on their beliefs about the behaviour of others.

As Keynes (1974, p. 88) puts it “they are concerned, not with what an investment is

really worth to a man who buys it ‘for keeps’, but with what the market will value it

at under the influence of mass psychology ...”. Even if the expected payoff from the

game (in equilibrium) is higher for the rational relative to the less rational players,

in the absence of common knowledge of rationality, rational players may not believe

that other players entering the game will also be rational. Hence, it is not obvious

whether well-designed markets will select rational players and drive behaviour (in

games) closer to the equilibrium predictions.

In this paper, we study whether market selection can reduce anomalous behaviour

(i.e., deviations from the equilibrium behaviour) in games (i.e., strategic interaction

situations) where the equilibrium behaviour depends not only on players’ ability to

employ rational logical reasoning, but also their beliefs about the rational logical rea-

soning capabilities of other players in the game. This type of epistemological rea-

soning (i.e., reasoning about the reasoning of others) underlines many economic in-

teractions. This task is well suited to laboratory experiments where the confounding

forces such as liquidity constrains, beliefs and experiences can be carefully controlled.

We consider an environment where auctions are used to select players into a game—

auctions are one of the simplest and most common market mechanism used to allocate

economic tasks (e.g., spectrum auctions, government projects).

We base our experiment on the three-player Red Hat Puzzle (RHP) game, a close

variant of Littlewood’s (1953) “Dirty faces problem”.5,6 We use the RHP game since

the equilibrium, when modelled as a dynamic Bayesian game with incomplete in-

formation, requires players to apply strategic and epistemological reasoning—such

reasoning is common in many economic interactions. Indeed, Weber (2001), Bayer

and Chan (2007) and Bayer and Renou (2016a,b) use this feature of the RHP game

to study “steps of individual bounded rationality”.7 Also, the equilibrium solution in

5Variations of the RHP game are often found in game theory textbooks (e.g. Myerson, 1991; Fuden-
berg and Tirole, 1991; Maschler et al., 2013), discussions about common knowledge (e.g., Geanakop-
los, 1992; Samuelson, 2004) and epistemological reasoning (e.g., Fagin et al., 2004). Littlewood tells
it as follows. “Three ladies, A, B, C in a railway carriage all have dirty faces and are all laughing. It
suddenly flashes on A: why doesn’t B realise C is laughing at her? — Heavens! I must be laughable.”

6Choo et al. (2019a) show that prediction markets can help solve the red hat puzzle game by
allowing traders to bet on the uncertain state of the nature in the game.

7The previous experiments primarily use the RHP game to study k-level (e.g., Nagel, 1995; Stahl
and Wilson, 1994; Camerer et al., 2004) reasoning behaviour. Though behaviour in this study may
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the game is Pareto optimal (in expectations) for all players. This ensures that the ex-

pected payoffs in the game are always higher for players who know the equilibrium

solution and believe that all other players in the game will also play the equilibrium

solution.8

To study whether market selection can reduce anomalous behaviour (i.e., non

equilibrium behaviour) in the RHP game, we consider two mechanisms to select play-

ers into the RHP game: auction versus random mechanisms. However, players’ be-

haviour in the RHP game, and consequently their auction bidding behaviour, may

depend on their beliefs about the “rationality” of the other players who enter the RHP

game. We therefore also vary the types of players with whom the selected players

(i.e., those who enter the RHP game) will interact in the game: computer-players

programmed to play the equilibrium behaviour versus human players. It should be

clear that the strategic uncertainty element of the game is removed in the computer

treatment and in doing so, reduces the RHP game into an individual decision task.

Also note that the equilibrium solution in the RHP game neither depends on the se-

lection mechanism nor on the type of opponents (computer or human). The above

considerations result in a 2×2 experimental design.

We find that market selection (i.e., the use of auction as opposed to the random

mechanism) significantly reduces deviations from the equilibrium behaviour in the

RHP game—the reduction is largest when players face the most complex permutation

of the RHP game. This holds when players interact with other human players as

well as computer-players who are programmed to play the equilibrium. We show

that this is because the auction mechanism selects “rational” players (i.e., those who

know the equilibrium solution) into the RHP game more frequently than the random

mechanism. Finally, behaviour in the RHP game do not seem to differ significantly

depending on whether selected players interact with human or computer-players.

The experiment also enables us to study how players’ “rationality” and strategic

uncertainties are reflected in the auction bidding behaviour—we used a second-price

auction. When the RHP game is transformed into an individual decision task such

as in the computer-player treatment, we find that rational players often submit the

equilibrium bid—the bidding behaviour of the less rational players are substantially

also involve some elements of the k-level model, such discussions will be omitted as they divert from
the main research agenda.

8In a preliminary study, Choo (2014)—one of the authors in this study—embedded asset markets
into the RHP game to study the influence of market interaction on anomalous behaviour. The ex-
periment suggests that asset markets can in fact exacerbate anomalous behaviour in the RHP game.
However, subsequent discussions with Zhou— the other author in this paper—revealed certain design
limitations in the former study that made it difficult to evaluate the effects of markets on behaviour
in the RHP game—we will elaborate on these limitations in the conclusion section. The discussions
motivated the experimental design in this paper.
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more “noisy”. Moving from the computer to human treatments, we observe that ra-

tional players “shade” their bids to compensate for the strategic uncertainties in the

RHP game. In contrast, strategic uncertainties does not seem to affect the bidding

behaviour of the less rational players.

This paper contributes to several strands of literature. The most relevant relates

to the growing body of experimental evidence highlighting the intricacies between

individual level bounded rationality and aggregate level outcomes.

In a related study, Kluger and Wyatt (2004) investigate whether individual proba-

bility judgement errors are reflected in asset market prices. To do so, they embed the

“Monty Hall problem” into asset markets—traders trade assets which give them the

rights to switch doors in the Monty Hall problem.9 They find that market prices are

close to the predicted equilibrium when the market consists of at least two unbiased

Bayesian players, as determined by their behaviour in the Monty Hall problem. How-

ever, such occurrences are relatively rare, occurring only in around 25% of markets

(Fehr and Tyran, 2005).

Like the Monty Hall problem, the RHP game requires players to perform Bayesian

updating. However, the RHP game additionally requires players to apply strategic and

epistemological reasoning. In addition to the different types of task studied (Monty

Hall problem versus RHP game), there is also an important difference between our

paper and Kluger and Wyatt (2004). Their paper mainly focuses on whether market

prices will converge to the equilibrium.10 In this paper, we focus on the allocation out-

come of assets, that is whether the rational players get the assets more frequently than

their bounded-rational counterparts. In fact, we also show that subjects’ “rationality”

are reflected in their auction bidding behaviour.

A closely related concept to our study is the market selection hypothesis (e.g Alchian,

1950; Friedman, 1953) which posits that in the long-run, the evolutionary forces of

the market will eventually drive out the less rational players.11 Kendall and Oprea

(2018) test the hypothesis in a laboratory experiment. They base their experiment on

9The Monty Hall Problem is inspired by a popular TV game show, where the host Monty hides a
winning prize behind one of three closed doors. Contestants are invited to open a door. However,
before the door is actually opened, Monty is pre-committed to opening a non-prize door and then
offers each contestant the chance to switch her choice to the other unopened door. The dominant
strategy in this problem is to always switch as it offers the contestant a 2/3 chance of picking the prize
door.

10Even in markets where prices converge to the equilibrium, Kluger and Wyatt (2004) experiment
suggests that the non-Bayesian players still hold a fair proportion of the assets.

11The market selection hypothesis is the economics analogy of natural selection. However, DeLong
et al. (1991) and Blume and Easley (2006) show that the hypothesis does not always hold. Also, Fehr
and Tyran (2005) argue that the market selection hypothesis may not be applicable in many economic
situations. For example, it is difficult to see why a consumer who makes sub-optimal consumption
decisions will be driven out of the consumer market.
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the Blume and Easley (1992) multi-period model: at each period, players distribute

their wealth over consumption and investment opportunities.12 To trigger individual

biases, returns on investments are linked to a Monty Hall type problem. Consistent to

the market selection hypothesis, they find that unbiased Bayesian subjects are more

likely to survive in the long-run.13

A key difference between this study and that of Kendall and Oprea (2018) is that in

the latter, there are no markets where players compete for commodities: players’ task

is to allocate wealth between consumption and investment. In this view, our paper

shows that the market selection hypothesis can also be supported in the short-run

when players are allowed to compete for the rights to make investments.

In a price-setting game, Fehr and Tyran (2005, 2008) show that the effects of

money illusion on aggregated prices depend on the strategic environment (Haltiwanger

and Waldman, 1985, 1989).14 They find that when the environment is one of strategic

complementarity, prices adjust slowly in response to anticipated monetary shocks. In

contrast, the adjustment rate is extremely quick (i.e., prices converge to equilibrium

fairly quickly) when the environment is one of strategic substitutability.

This paper also contributes to the growing body of experiment literature that in-

vestigates the influence of selection into games. For example, auctioning participa-

tion rights can improve contributions in the threshold public goods game (Broseta et

al., 2003), help people coordinate on the efficient equilibrium in coordination games

(Van-Huyck et al., 1993; Crawford and Broseta, 1998), and affect behaviour in the

Ultimatum game (e.g., Güth and Tietz, 1986; Shachat and Swarthout, 2013). In these

games, the auctions can potentially function as a “coordination device” (i.e., people

learn about what others will do from the market price) and help with equilibrium se-

lection. As will be clearer in the experimental design, auctions in our study function

purely as a “selection device".

Finally, we contribute to the body of literature which finds markets to be useful

in guiding and solving complex problems. For example, Maciejovsky and Budescu

(2005, 2013) show that market prices can help improve subjects’ performances in the

Wason (1966) selection task, a well-known test of deductive reasoning. Meloso et

al. (2009) show that a market-based system of compensation can promote intellec-

12In Kendall and Oprea (2018) experiment, subjects make static consumption and investment deci-
sions at the start of each period, and the computer program will simulate hundreds of rounds of draws
to calculate their payment.

13Kendall and Oprea (2018) devise a “survival index” that is based on subjects’ relative share of the
wealth. The presumption here is that since wealth is required to make investment decisions, then a
test of the market selection hypothesis is whether the less rational people will run out wealth sooner
than their rational counterparts.

14Money illusion is a cognitive bias associated with confusing nominal and real variables.
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tual discovery (modelled by solving the knapsack problem) better than a patent-based

system.

Taken together, our findings suggest that individual level bounded rationality does

not necessarily falsify the applicability of models that assume fully rational players.

In fact, market selection can sometimes reduce anomalous behaviour in games. How-

ever, our findings do not lead us to conclude that markets can always correct or offset

individual anomalous behaviour. Firstly, there are some situations (e.g., consumer

market) where market competition for participation rights simply does not exist—

players cannot be excluded from the interaction. Secondly, market competition can

also exacerbate anomalous behaviour if the bounded-rational players value participa-

tion rights more than their rational counterparts.15 For example, Choo et al. (2019b)

show that it is possible to incentivise the less rational players to bid higher in auctions

and hence increase deviations from the equilibrium in the p-beauty contest game

(Nagel, 1995). Finally, markets may not always be desirable. For example, Offer-

man and Potters (2006) find that auctioning participation rights increases collusion

in oligopoly markets. Kogan et al. (2011) find that asset market prices can drive

people to coordinate on a less efficient equilibrium.

The rest of this paper is structured as followed. Section 2 details the RHP game.

Building on this, Section 3 details our experiment design. Section 4 summarises our

experimental findings. Finally, Section 5 concludes.

2 The red hat puzzle (RHP) game

There are three players each wearing a coloured hat that can be red or black with

equal chance. Each player observes all other players’ hats but her own. Players also

receive the public signal that “there are no red hats” or “there is at least one red hat”.

The public signal depends on the total number of red hats and is always truthful. The

above is common knowledge.

There are t = 1, 2, 3, 4 periods. At each period t < 4, players are asked “Do

you know your hat colour?” and they can respond with the actions “My hat is red”

(aR), “My hat is black” (aB) or “I don’t yet know” (aN ). A player ends the RHP game

whenever aR or aB is chosen and only progresses to the next period if she chooses

aN . At each period, players also observe the previous periods’ actions of every other

player. Finally, players at period 4 are asked the same question but can only respond

15For example in games that resemble the centipede game, it is possible for the rational player (i.e.,
one that plays the sub-game perfect equilibrium) to value the participation right less than the bounded-
rational players (i.e., one that uses some non-equilibrium model of behaviour).
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with aR or aB.16

A player’s payoff depends on whether she is correct (e.g., choosing aR when hat

is red) and the period that she ends the RHP game (T̄), and is derived as:

π=

 1100− 100T̄

400− 100T̄

if the player is correct,

if the player is incorrect.
(1)

Hence, a player incurs a deduction of 100 each time aN is chosen and a further deduc-

tion of 700 if she is incorrect about her hat colour—no deductions for being correct.

Therefore, all players should always seek to correctly resolve their own hat colour in

the soonest possible period.

2.1 Equilibrium

For each player, let r ∈ {0, 1, 2} denote the total number of red hats that she observes.

When modelled as a Bayesian game with incomplete information, the indirect com-

munication equilibrium (Geanakoplos and Polemarchakis, 1982) is for each player to

choose aN at periods t < r + 1 and at period t = r + 1, choose aR (resp. aB) if her

hat is red (resp. black)—henceforth known as the equilibrium behaviour. Each player

resolves her hat in period r + 1 and the equilibrium payoff is π∗ = 1000− 100r.

To illustrate the equilibrium, consider the case where all hats are red.17 Here,

each player observes two red hats (i.e., r=2) and assigns an equal posterior that her

hat is red or black. Furthermore, despite players’ private information and the public

signal that there is at least one red hat, Aumann (1976) agreement theorem shows

that the only common knowledge fact is that there is at least one red hat.

• Period 1: Players choose aN when asked about their hats.

• Period 2: Each player learns that there is at least two red hats—otherwise some-

one would have chosen aR in period 1. However, they already know this and

there is no revision to their posterior—they will again choose aN . Nevertheless,

if it is common knowledge that all players performed the same reasoning, it

becomes common knowledge that there is at least two red hats.

16Suppose that player 1 chooses aB in period 1 whilst players 2 and 3 both choose aN in period 1.
Only players 2 and 3 progress to period 2. In addition, players 2 and 3 observe the previous period’s
actions of all other players (e.g., player 2 sees that player 1 chose aB in period 1 and that player 3
chose aN in period 1).

17We refer the reader to Chapters 9 and 10 of Maschler et al. (2013) for a detailed exposition of the
equilibrium solution.
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• Period 3: Each player deduces that there must be three red hats—otherwise the

other two red hat players would have chosen aR in period 2. Each player now

chooses aR.

Notice from the above that players who observe r > 0 need only learn about their

own hat colour through the period r actions of those other players they observe to be

under a red hat. Furthermore, choosing aN at period t ′ < r +1 is only optimal for an

uncertain player if she expects to learn about her hat colour from the period r actions

of the other red hat players—otherwise she should randomise between aB and aR at

period t ′. In equilibrium, all players always expect to resolve their hats.

The equilibrium solution is trivial when r = 0. When r > 0, the equilibrium so-

lution requires players to apply logical and epistemological reasoning (i.e., reasoning

about the reasoning of others). Intuitively, the complexity of reasoning involved is

increasing with r. Experiments find that people are heterogeneous in their ability to

perform the necessary logical and epistemology reasoning demanded by the equilib-

rium solution in the RHP game. For example, Weber (2001) finds that only 65% and

45% of experiment subjects , from the undergraduate and graduate cohort in Caltech,

adhered to the equilibrium behaviour when observing r = 1 and r = 2, respectively—

all did so when r = 0.18 The corresponding r = 1 and r = 2 proportions in non-market

experiments of Choo (2014) are 0.70 and 0.13, respectively—Choo uses undergrad-

uate students from a middle tier UK university. The differences in the two studies

suggest that performances in games that involve logical reasoning may vary across

different subject pools (e.g., Chou et al., 2009).

In dynamic games, a player’s deviation from the equilibrium path can be triggered

by their opponents’ prior deviations or strategic uncertainty (i.e., uncertainties with

regards to the purposeful nature of others’ actions). To control for the above concerns,

Bayer and Renou (2016a,b) conduct a version of the RHP game where experiment

subjects play against computer players programmed to always play the equilibrium

(i.e, adherence to the equilibrium behaviour solely depended on subject’s knowledge

of the equilibrium solution).19 They find that only 75% and 44% of subjects adhered

to the equilibrium behaviour when observing r = 1 and r = 2, respectively.

18In Weber’s experiments, players can only choose aR or aN at each period and the game ends for all
players upon any player choosing aR.

19Subjects in their study were primed that there exists a logical solution in the game. To avoid
“logical inconsistencies” their design also includes a condition whereby the RHP game ends whenever
a subject deviates from the equilibrium path.
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3 Experiment design

We investigate whether market selection can reduce anomalous behaviour in the RHP

game (i.e., deviations from the equilibrium behaviour). To do so, we use auctions to

allocate the participation rights to the three-player RHP game—this will be compared

against our control treatments where the participation rights are randomly allocated.

To motivate our experiment design, consider the following thought experiment.

Thought experiment. There are three coloured hats. Two sisters, Ann and Eva, are

under the same hat and observe r ′ > 0. The other two hats are worn by Charlie and

Dale, respectively. A second-price auction is used to decide which of the two sisters,

Ann or Eva, will be selected to play the RHP game against Charlie and Dale (i.e., both

sisters bid for rights to play the RHP game). Both sisters always seek to maximise their

own payoffs but only Ann knows the equilibrium solution in the RHP game. Consider

the ex-ante expected payoff from the RHP game for each sister. If selected into the

RHP game, Eva will randomise between aB and aR in period 1 with the expected

payoff of π= 0.5(1000)−0.5(1000−700) = 650—she has an equal chance of being

correct—and through backward deduction, bid b = π.20 Ann’s expected payoff is

more subtle as it depends on whether she expects to resolve her hat in period r+1. If

this is positive, her expected payoff is π∗ = 1000−100r ′ and she bids b∗ = π∗, where

b∗ > b for all r ′ > 0. If it is instead negative, Ann’s expected payoff is similar to Eva

and she bids b.

Ann’s bidding behaviour thus depends on whether she believes that she can de-

duce her hat colour from the period r ′ actions of the other red hat players. We there-

fore first consider a treatment where Ann can always expect to resolve her hat. To

do so, players in the RHP game are always paired with computer players who are

programmed to play the equilibrium.

Thereafter, we study behaviour in the RHP game when the auction winner (i.e.,

Ann or Eva) plays against other human players who are themselves also selected by

the auction mechanism. In contrast to above treatment, Ann cannot be sure that she

will always resolve her hat in period r ′ + 1. Nevertheless, Ann may value the partic-

ipation rights more than Eva if she anticipates that the auction will also frequently

select other “Ann like individuals” into the RHP game.

20Choosing aN is strictly dominated for Eva as she incurs a deduction of 100 with no obvious benefits.
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3.1 Design overview

The experimental design is summarised in Figure 1 and involves four treatments:

Random computer (RCOM; n = 54 subjects), Market computer (MCOM; n = 54 sub-

jects), Random human (RHUM; n= 54 subjects) and Market human (MHUM; n= 45

subjects). The experiment was conducted in June 2019 at the Shanghai Jiao Tong

University, Smith Experimental Economics Research Center. Inexperienced subjects

were recruited via ORSEE (Greiner, 2015). The experiment was programmed with

zTree (Fischbacher, 2007).

Subjects interact in fixed-matching groups of 9 participants. The instructions are

detailed in Appendix C and the experimental data and software are available upon

request.

Each treatment consists of two independent parts (I and II) for which the instruc-

tions are only available at the start of that part. Part I involves five independent rounds

and one random round is payoff relevant. Part II involves fifteen independent rounds

and three random rounds are payoff relevant.21 Experimental earnings in each round

are denoted in “points”.

Part I is identical across all treatments. We use part II to differentiate between

the human (RHUM and MHUM) and computer (RCOM and MCOM) treatments. The

following subsections detail each part.

3.1.1 Part I

At each round, subjects play the three-player RHP game without feedback against

computer players (i.e., a computer program makes decisions for the two other hat

players). The computer players are programmed to always best respond to the actions

of others at each period t. Appendix B details the computer players’ programmed

rules.22 We use subject’s behaviour in part I to elicit their understanding of the RHP

game equilibrium solution.

21We chose to pay three random rounds as opposed to one random round in part II to “smooth”
subjects’ cash earnings (see Charness et al., 2016).

22Subjects are informed that the computer players are programmed to always maximise their own
points and to always resolve their own hat colour in a logical manner. Furthermore, subjects are
reminded that the computer can never “cheat” and will always base its decisions on the public signal,
its observations of the other hat colours and the decisions of the other players in the RHP game. As
such, computer players may also be incorrect about their hat colour when the subject deviates from
the equilibrium path.
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Note. There are four treatments each consisting of two independent parts. In each
round of part II, subjects interact in fixed matching groups of nine players—part I in-
volves individual decision-making task. We recruited 54 subjects (6 matching groups)
in each of the RCOM, MCOM and RHUM treatments and 45 subjects (5 matching
groups) the MHUM treatment.
+ Computer: All players in part I and selected players in part II play the RHP game
against computer-players who are programmed to play according to the equilibrium
solution.
+ Human: Selected players in part II play the RHP game against other selected play-
ers.

Figure 1: Summary of experiment design.
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3.1.2 Part II

Each round involves three hats with three players under each hat. We refer to the

players in the same hat as a silo. Players in the same matching group are randomly

assigned to one of three silos in each round.

Players in each silo observe the public signal and the other two hat colours—

players of the same silo observe the same r. Each silo selects one player to participate

in the RHP game. The treatments differ on the selection mechanism.

• RHUM and RCOM (random mechanism). Each silo randomly selects one player

to enter the RHP game—equal chance for each player.

• MHUM and MCOM (auction mechanism). Each silo uses a second-price auction

to select one player for the RHP game — players are endowed with 1500 points

and submit their bids for participating in the RHP game after observing r and

the public signal.23 Finally, auction winners only observe the selling price in

their own silo. This prevents players from learning about their hats from the

prices of other markets.

The selection process is common knowledge. The selected players in the human

(RHUM and MHUM) treatments play the RHP game as described in Section 2—each

selected player plays the RHP game against two other human players who are them-

selves selected by the auction or random mechanism. The selected players’ hat colours

correspond to their silo’s hat colour.24,25 In contrast to the human treatments, the se-

lected players in the computer (RCOM and MCOM) treatments play the RHP game

against two other computer players which are programmed as in part I.

The end of round payoffs for the non-selected and selected players are as follows

Π=


1500

1500− z +π

620+π

if not selected by auction or random mechanism,

if selected by auction mechanism,

if selected by random mechanism,

(2)

where z ∈ [0, 1500] is the auction transaction price and π is the player’s payoff from

the RHP game (see equation (1)). In the MHUM and MCOM treatments, non-selected

players keep their endowment of 1500 points and selected players pay z for the rights

23In the event of a tie, a random mechanism determines the auction winner.
24Suppose that players in silo A are under a red hat and observe two other red hats. The selected

player in silo A will play the version of the RHP game where she is under a red hat and r = 2.
25Whilst the RHP game was ongoing in the experiment, the computers screens were blank for subject

who were not selected by the auction or random mechanisms.
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to participate in the RHP game. In RHUM and RCOM treatments, non-selected players

receive a fixed payment of 1500 points and selected players receive a lower fixed

payment of 620 points—as described in the following paragraph, this is lower to keep

the average payoff consistent across all treatments.

Equilibrium. The selection mechanism does not affect the equilibrium in the RHP

game. All players will expect to resolve their hats in period r + 1 and bid b∗ =
1000− 100r. The equilibrium payoffs for selected players in the MHUM and MCOM

treatments are therefore 1500 points. The payoffs for the selected players in the

RHUM and RCOM treatments are also on average 1500 points.26 Note that the ran-

dom and auction mechanism are equivalent in equilibrium since players in the auction

treatments will be randomly selected if all bid b∗.

Comment. We chose to model market selection with the second-price auction, as op-

posed to the first-price or all-pay auction, as we wanted to study bidding behaviour—it

is a weakly dominant strategy for players to bid their valuations in the second-price

auction, regardless of their risk preferences. This implies that players in the MCOM

treatment who know the equilibrium solution should bid b∗ = 1000 − 100r since

they would always play against computer players. Relative to the MCOM treatment,

players in the MHUM treatment may shade their bids when r > 0 to “price in” the

possibility that they would not correctly learn about their hats from the actions of

others. Nevertheless, market selection may still reduce equilibrium deviations in the

RHP game if players who know the equilibrium solution bid more than those who

don’t.

3.2 Other information

Subjects in part II interacted in fixed matching groups of nine participants—we pre-

generated a sequence of states of nature (i.e., hat colours) and administered the same

26The equilibrium payoff in the RHP game depends on r. A player has a 2/8, 4/8 and 2/8 chance
of observing r = 0, r = 1 and r = 2 red hats, respectively. The expected earnings in the RHUM and
RCOM treatments will therefore be

Π∗ = 620+
2
8
(1000) +

4
8
(900) +

2
8
(800) = 1520

which is very close to the equilibrium payoff for selected players in the MHUM and MCOM treatments.
Notice here that selected players in the RCOM and RHUM treatments will on average earn 20 points
more than those who were not selected into the RHP game—the small difference is to compensate
selected players for their effort. The rationale for the compensation is because subjects are randomly
chosen to play the game in stead of participating voluntarily.
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sequence to each matching group. At the end of each round in part II, subjects also re-

ceived full feedback.27 The experiment sessions took about 120 minutes and the mean

earnings in the RCOM, MCOM, RHUM and MHUM treatments were $19.80, $20.20,

$19.90 and $20.10 USD, respectively.28 In the post experiment survey, subjects also

completed the non-incentivised three question cognitive reflective test (CRT, Freder-

ick, 2005) and were asked about any prior familiarity with the RHP game or similar

puzzles. Around, 42%, 48%, 52% and 47% (Fisher exact, p = 0.889) of subjects in

the RCOM, MCOM, RHUM and MHUM treatments, respectively, indicated that they

have heard about the RHP game or similar puzzles.29 We find no significant between

treatment differences in CRT (Fisher exact, p = 0.721; mean 2.45).30

4 Results

4.1 Preliminaries

Define a player to be in agreement if she adheres to the equilibrium behaviour in the

RHP game given r and her own hat colour.31 We also use the R0, R1 and R2 short-hand

to denote instances where players observe r = 0, r = 1 and r = 2, respectively.

Part I is identical across all treatments: all subjects played 5 rounds (1×R0 round,

2×R1 rounds, 2×R2 rounds) of the RHP game, without feedback, against computer-

players. Here, 100% and 92% of subjects were always in agreement in the R0 and

R1 rounds, respectively. We hence use their behaviour over both R2 rounds to classify

them into sophisticated and unsophisticated types:

• Sophisticated type: Subjects who were always in agreement over both R2 rounds

(44% of subjects) in Part I or only during the second R2 round (12% of sub-

jects).32

27Subjects were informed about the experimental payoff and their earnings for the round.
28The experiments were conducted in China. Subjects’ earnings in parts I (one random round) and

II (three random rounds) were converted to cash at the exchange rate of 1 point to 0.02 yuan. In
addition, subjects also received a 10 yuan show up payment. The currency exchange rate during the
period of the experiment was around USD$1 to 6.67 yuan.

29Due to a software glitch, we failed to conduct the survey for 2 matching groups (i.e., 18 subjects)
in the RCOM treatment. Nevertheless, the glitch did not affect the main experiment.

30Mean CRT score in our sample is higher than the original findings by Frederick (2005). This may
be because the test is increasingly used in experiments. Indeed, Haigh (2016) find that performances
in the CRT increases with prior exposure to the test. We find no significant correlation between prior
familiarity (i.e., heard of the puzzle) and performances in the cognitive reflective test (spearman ρ =
0.051, n= 189, p = 0.479).

31A player who deviates from the equilibrium path is never defined as being in agreement even
when it is a logical best response. This restriction helps comparability across the computer and human
treatments.

32The latter condition allows for a minority of subjects to learn about the equilibrium through re-
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• Unsophisticated type: Subjects who were never in agreement over both R2 rounds

(36% of subjects) or only during the first R2 round (8% of subjects)—the latter

condition assumes that sophisticated types do not make mistakes.

Both types are assumed to only differ in their knowledge of the R2 equilibrium solution—

they know the solution when R0 and R1 are observed.33 Column (1) of Table 1 details

the observed proportion of sophisticated types in each matching group. We make the

following observations.

Observation 1 There is some heterogeneity across the matching groups. The proportion

of sophisticated types vary from 22% of subjects in some groups to around 78% of subjects

in some other groups.

The above suggests that it is important to disentangle the treatment effect (i.e.,

the selection mechanism) from the prior distribution of sophisticated types in the

matching groups. This is because the treatment effect is based of the idea that the

auction mechanism will select sophisticated types more frequently than the random

mechanism.34 Hence, in the absence of learning, it will be important to control for the

proportion of sophisticated types in each matching group when we compare outcomes

in the RHP game—the learning phenomenon here refers to the unsophisticated types

realising the R2 equilibrium solution through repeated play in part II.

To verify that little learning takes place in part II, consider the RCOM and RHUM

treatments. Aggregating over all rounds in part II, the proportion of agreement sub-

jects in the RCOM (resp. RHUM) treatment when R0, R1 and R2 are 100%, 97% and

58% (resp. 98%, 93% and 50%), respectively.35 Focusing on the R2 case, we unsur-

prisingly find agreement likelihood (i.e., the probability of being in agreement) in

the RCOM and RHUM treatments to be significantly (p = 0.025) higher for sophis-

ticated relative to unsophisticated types—the econometric estimates are reported on

Table A1 of the Appendix. There is no evidence of learning for unsophisticated types:

agreement likelihood for sophisticated (p = 0.971) and unsophisticated (p = 0.632)

peated play even when there is no feedback. The results in this paper also hold if we will use a stricter
criteria that sophisticated types are only those who were in agreement over both R2 rounds.

33Cognitive reflective test scores are significantly higher for sophisticated relative to unsophisticated
types (Mann-Whitney, n = 189, p < 0.001). Surprisingly, we find no significant between type differ-
ences in self-declared prior familiarity with the RHP game (z-test, n= 189, p = 0.105).

34If there are no sophisticated types in the market, then the auction and random mechanism are
equivalent.

35The proportion of agreement subjects in part II of the RCOM and RHUM treatments are sub-
stantially higher than those reported by Bayer and Renou (2016b,a) and Weber (2001) when R1 is
observed—the R2 rates are similar. Perhaps our subjects were better able to concentrate in experi-
ments.
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types do not increase significantly with rounds. These findings also carry forward to

the MCOM and MHUM treatments.36 This leads us to the second observation.

Observation 2 We find no evidence for learning in the red hat puzzle game. As such,

subjects’ behaviour in the red hat puzzle game is strongly dependent on their type (so-

phisticated vs. unsophisticated).

4.2 Market Selection

We now focus on behaviour in Part II. For each matching group, define the R0, R1

and R2 agreement rates as the relative proportion of agreement subjects (pooling over

all rounds) in the RHP game when R0, R1 and R2, respectively, are observed—each

matching group contributes three independent data-points.

Columns (2), (3) and (4) of Table 1 detail the R0, R1 and R2 agreement rates,

respectively, in each matching group. For example, of the 13 instances in group 3

where subjects in the RHP game observed R2, 7 instances (54%) corresponded to

them being in agreement.

As can be expected given subjects’ behaviour in part I, R0 and R1 agreement rates

are close to unity.37 We therefore focus on the R2 case.

Eyeballing column (4) of Table 1, R2 agreement rates are often higher in the

MCOM relative to RCOM treatments (Mann-Whitney, n = 12, p = 0.194) and in

the MHUM relative to RHUM treatments (Mann-Whitney, n= 11, p = 0.021), though

the differences are only significant in the latter comparison.38 The insignificant differ-

ence between the MCOM and RCOM treatments is mainly due to the low proportion

of sophisticated types in matching group one, which belongs to the MCOM treat-

ment (column (1) of table 1). If we drop this matching group from the analyses, R2

agreement rates are significantly higher in the MCOM relative to RCOM treatments

(Mann-Whitney, n = 11, p = 0.051). Therefore, to see the between-treatments dif-

ferences more clearly, it is necessary to control for the proportion of sophisticated

36Agreement likelihood in the MHUM and MCOM treatment is significantly (p = 0.033) higher for
sophisticated relative to unsophisticated types. For unsophisticated (p = 0.367) and sophisticated
(p = 0.301) types, agreement likelihood does not increase significantly with rounds.

37There were one and two instances in the RHUM (group 14) and MHUM (group 21) treatments,
respectively, where subjects were not in agreement when observing R0. This inevitably resulted in their
peers (i.e., those observing R1 ) also not being in agreement.

38We find a positive correlation between the proportion of sophisticated types and the corresponding
R2 agreement rates for matching groups in the RCOM (spearman ρ = 0.831, n = 6, p = 0.0401),
MCOM (spearman ρ = 0.955, n = 6, p = 0.003) and MHUM (spearman ρ = 0.811, n = 5, p =
0.095)—there is no significant correlation in the RHUM treatment (spearman ρ = −0.590, n = 6,
p = 0.216).
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(1) (2) (3) (4) (5) (6) (7)
matching % sophisticated agreement rates sophistication rates

group types R0 R1 R2 R0 R1 R2

RCOM 3 0.33 1.00 1.00 0.54 0.38 0.42 0.46
4 0.78 1.00 0.79 0.69 0.88 0.71 0.77
5 0.56 1.00 1.00 0.38 0.63 0.63 0.46
6 0.56 1.00 1.00 0.69 0.38 0.75 0.62
7 0.33 1.00 1.00 0.46 0.38 0.42 0.23
8 0.78 1.00 1.00 0.69 0.88 0.96 0.92

MCOM 1 0.22 1.00 1.00 0.38 0.13 0.21 0.31
2 0.56 1.00 1.00 0.77 0.75 0.46 0.92
9 0.67 1.00 0.96 0.77 0.75 0.63 0.69

10 0.78 1.00 1.00 1.00 0.50 0.92 1.00
11 0.44 1.00 1.00 0.85 0.63 0.46 0.92
12 0.33 1.00 0.96 0.46 0.38 0.50 0.46

RHUM 13 0.67 1.00 1.00 0.54 0.88 0.54 0.62
14 0.44 0.88 0.88 0.92 0.38 0.46 0.31
15 0.56 1.00 1.00 0.31 0.38 0.50 0.54
16 0.67 1.00 0.83 0.31 0.25 0.71 0.62
17 0.33 1.00 0.92 0.38 0.50 0.29 0.54
18 0.56 1.00 0.96 0.54 0.63 0.67 0.38

MHUM 19 0.67 1.00 0.96 0.62 0.63 0.67 0.77
20 0.67 1.00 0.96 0.69 0.50 0.54 0.85
21 0.67 0.75 0.79 1.00 0.88 0.58 1.00
22 0.56 1.00 1.00 0.92 0.38 0.46 0.77
23 0.78 1.00 0.96 1.00 0.50 0.54 1.00

♯ of obs. per group 9 8 24 13 8 24 13

Note. Experimental subjects interact in fixed matching groups of 9 subjects. Sophisticated
types are those who were in agreement over both R2 rounds in part I or only the second R2
round in part I. Column (1) reports the proportion of sophisticated types (determined by Part
I behaviour) in each matching group. Columns (2), (3) and (4) report the agreement rates
(i.e., proportion of agreement subjects in the RHP game) when R0, R1 and R2, respectively,
are observed. Columns (5), (6) and (7) report the sophistication rates (i.e., proportion of
sophisticated types in the RHP game) when R0, R1 and R2, respectively, are observed.

Table 1: Proportion of sophisticated types, agreement rates and sophisticated rates in
Part II.
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Dep. variable R2 agreement rate R2 sophistication rate

(1) (2) (3) (4) (5) (6)
Treatments COM HUM COM &

HUM
COM HUM COM &

HUM
Auction 0.17

(0.07)

∗∗ 0.38
(0.16)

∗∗ 0.27
(0.11)

∗∗ 0.20
(0.08)

∗∗ 0.30
(0.07)

∗∗∗ 0.24
(0.08)

∗∗∗

Computer 0.06
(0.10)

0.05
(0.07)

Computer × Auction −0.12
(0.16)

−0.05
(0.11)

% Sophisticated 0.73
(0.19)

∗∗∗ 0.27
(0.66)

0.53
(0.25)

∗ 1.09
(0.23)

∗∗∗ 0.58
(0.33)

0.98
(0.18)

∗∗∗

Constant 0.16
(0.12)

0.64
(0.37)

0.21
(0.15)

−0.03
(0.14)

0.18
(0.19)

−0.03
(0.11)

n 12 11 23 12 11 23
R2 0.65 0.46 0.45 0.72 0.81 0.74

Note. Each matching group constitutes one data-point in this analysis. We control for the
proportion of sophisticated type in the matching group. Robust standard errors are reported
in parenthesis.
∗∗∗: p < 0.01, ∗∗: p < 0.05, ∗: p < 0.10.

Table 2: OLS regression estimates.

types in each matching group. The relevant OLS regression estimates are reported on

columns (1) and (2) of Table 2.

Result 1 Market selection can reduce anomalous behaviour in the red hat puzzle game

when two red hats are observed. This holds when human players interact with other

human players as well as computer-players who are programmed to play the equilibrium.

Support for Result 1: The estimates on columns (1) and (2) of Table 2 show that con-

trolling for the proportion of sophisticated types in each group, R2 agreement rates are

approximately 0.17 (p = 0.049) units higher in the MCOM relative to RCOM treat-

ments and 0.38 (p = 0.044) units higher in the MHUM relative to RHUM treatments.

The differences are significant at the 5% level.39

Given the RHP game payoff structure (see equation (1)), players should immedi-

ately randomise between aR and aB in the RHP game if they do not expect to correctly

resolve their hat colour. Indeed, a substantial proportion of the non-agreement sub-

jects (70%, 73%, 44% and 50% in the RCOM, MCOM, RHUM and MHUM treatments,

respectively) chose to end the RHP game in period 1 when R2 is observed.40 The high

39The same conclusions are offered if the Fractional Logistic regression model (e.g., Papke and
Wooldridge, 1996, 2008) is used. Controlling for the proportion of sophisticated types in the R2 si-
los, as opposed to the proportion of sophisticated types in the matching groups, does not change the
conclusions.

40Amongst the RCOM, MCOM, RHUM and MHUM non-agreement subjects who ended the RHP game
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attrition rate may explain why the R2 agreement rates do not seem to differ much

across the computer and human treatments. This is confirmed by the OLS regres-

sion on column (3) of Table 2 which finds no significant differences in R2 agreements

rates between the MCOM and MHUM treatments (p = 0.467) as well as the RCOM

and RHUM treatments (p = 0.540).

A natural explanation to Result 1 is that the auction mechanism selects sophisti-

cated types more frequently than the random mechanism when R2 is observed. For

each matching group, we define the R0, R1 and R2 sophistication rates as the propor-

tion of sophisticated types selected by random or auction mechanisms to enter the

RHP game when R0, R1 and R2, respectively, are observed. Columns (5), (6) and (7)

of Table 1 detail the corresponding sophistication rates in each matching group. For

example, the 6 (46%) out of the 13 subjects who entered the RHP game in matching

group 3 were identified as a sophisticated type.

There are no discernible between treatment differences in the R0 and R1 sophisti-

cation rates. This can be expected since sophisticated and unsophisticated types are

assumed to know the equilibrium solution when R0 and R1 are observed—the auction

should not discriminate in favour of sophisticated types. We will again focus on the

R2 case.

Eyeballing column (7) of Table 1, we observe that R2 sophistication rates are often

higher in the MCOM relative to RCOM treatments (Mann Whitney, n= 12, p = 0.329)

and in the MHUM relative to RHUM treatments (Mann Whitney, n= 11, p = 0.005),

though the differences are again only significant for the former comparison. We again

use the OLS regression model to control for the proportion of sophisticated types. The

relevant estimates are reported on columns (4) and (5) of Table 2.

Result 2 The auction mechanism selects sophisticated types more frequently than the

random mechanism when two red hats are observed in the red hat puzzle game. This

holds when human players interact with other human players as well as computer-players

who are programmed to play the equilibrium.

Support for Result 2: The estimates on columns (4) and (5) of Table 2 illustrate that

controlling for the proportion of sophisticated types in each group, R2 sophistication

rates are approximately 0.20 (p = 0.048) units higher in the MCOM relative to RCOM

treatments and 0.30 (p = 0.005) units higher in the MHUM relative to RHUM treat-

ments. The differences are significant at the 5% level.41

in period 1 when R2 are observed, 87%, 77%, 100% and 80%, respectively, are unsophisticated types.
The high proportion of unsophisticated types lend weight to our conjecture that players who do not
expect to resolve their hats will randomise in period 1.

41We also note that the R2 sophisticated rates are not significantly different from the prior distribution
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Again, the estimates on column (6) of Table 2 show that R2 sophistication rates

do not differ significantly within the auction (p = 0.660) or random (p = 0.461)

treatments depending on whether subjects play the RHP game against computer or

human players.

In Table A2 of the Appendix section, we show that Results 1 and 2 also hold at the

subject level analysis: relative to subjects in the random treatments, subjects in the

auction treatments are significant more likely to be in agreement and be classified as

sophisticated type when R2 is observed.

Comment. When R2 is observed, the optimal strategy is for the unsophisticated

types is to end the RHP game in period 1. If the sophisticated types in MHUM and

RHUM treatments anticipate this, then it may be possible for them to learn about

their own hat colour in period 2 through the period 1 deviations of others when all

three hats are red (i.e., the sophisticated type sees r = 2).42,43 There were 9 and 3 in-

stances where a sophisticated type observing R2 in the RHUM and MHUM treatments,

respectively, ended the RHP game in period 2 after observing that one or more of her

opponents had ended the RHP game in period 1. Here, 88% and 67% of the above

instances in the respective treatments resulted in the sophisticated type choosing aR,

a strategy that is consistent with resolving one’s hat colour through the deviations of

others—such instances will not be classified as being in agreement. However, such

occurrences were relatively rare and do not affect the conclusions from Result 1. For

example, if subjects following such a strategy were also classified as being in agree-

ment, the R2 case agreement rates will still be significantly higher (p < 0.001) in the

MHUM relative to RHUM treatments.

4.3 Bidding behaviour

To better understand Result 2, we turn our attention to the bidding behaviour—

subjects in the MCOM and MHUM treatments independently submitted their bids

after observing r. For each subject, we compute her average bids (over all relevant

of sophisticated types for groups in the RCOM (Signrank, n = 6, p = 0.601) and RHUM (Signrank,
n = 6, p = 0.344). In contrast, the R2 sophisticated rates are significantly higher than the prior
distribution of sophisticated types for groups in the MCOM (Signrank, n = 6, p = 0.027) and MHUM
(Signrank, n= 5, p = 0.043) treatments.

42Suppose that a sophisticated type (say Ann) observing r = 2 notices that one other red hat player
had chosen aB or aR in period 1. Ann immediately deduces that the player must have randomised.
However, if Ann also believes that the player randomises because she sees two other red hats, Ann will
immediate deduce her hat to be red and chooses aR in period 2.

43Such concerns will not be relevant in the MCOM and RCOM treatments as subjects interact with
computer-players programmed to always play the equilibrium.
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rounds) when R0, R1 and R2 are observed.44 Figure 2 details the boxplot distribution

of average bids for sophisticated and unsophisticated types in the MCOM (top row)

and MHUM (bottom row) treatments.45 In each panel, we use the horizontal dash

lines to indicate the equilibrium bid price.

Result 3 Sophisticated types bid higher than the unsophisticated types when two red

hats are observed in the red hat puzzle game.

Support for Result 3: Average bids are significantly higher for sophisticated relative

to unsophisticated types in MCOM (Mann-Whitney, n = 54, p < 0.001) and MHUM

(Mann-Whitney, n = 45, p < 0.001) treatments when R2 is observed. We observe

no significant between type differences (Mann-Whitney, p ≥ 0.395 in each compari-

son) when R0 and R1 are observed—both types are assumed to know the equilibrium

solution.

Taken together Results 1-3 suggest that because sophisticated types bid more than

unsophisticated types when R2 is observed, the auction mechanism was able to select

the sophisticated types more frequently than the random mechanism. As a conse-

quence, the R2 agreement rates are higher in the auction treatments.

It is a weakly dominant strategy for subjects in the MCOM treatment to bid their

valuation since they always face computer opponents in the RHP game. Figure 2

shows that unsophisticated and sophisticated types bid very closely to the equilibrium

price, presumingly their valuation, when less than two red hats are observed. When

R2 is observed, only the sophisticated types bid closely to the equilibrium price.46,47

Subjects in the MHUM treatment interact with other human subjects in the RHP

game. Hence, players in the MHUM treatment may shade their bids to compensate

for the possibility of not correctly resolving their hat colour in the RHP game when

R2 is observed—by definition, all players expect to resolve their hats when R0 and

R1 are observed. If so, we can expect sophisticated types to bid lower in the MHUM

44Across the 15 rounds, each subject had at least once observed R0, R1 and R2. We chose to focus
on the average bid to minimise the “noise” at the subject level.

45Excluding outliers (defined as being outside 1.5 times the interquartile range), the whiskers, box
and thick line in the boxplot graph report the min/max value, interquartile range (i.e., 25th to 75th
percentile) and median of the distribution, respectively. We chose to report the boxplot distribution as
it shows how the data clusters around certain values.

46The average bid is less than 10 points away from the equilibrium price for 83% and 56% of MCOM
subjects when R0 and R1, respectively, are observed—the bidding strategy space is 1500 points. The
corresponding proportions when for unsophisticated and sophisticated types in the MCOM treatment
are 4% and 63%, respectively, when R2 is observed.

47We are aware that experiments with randomly induced valuations often find that subjects overbid
in the second-price auction (e.g., Kagel and Levin, 1993). However, note that our design is different
given that subjects’ valuation in the auction are not randomly induced (i.e., depends on their expected
payoffs in the RHP game).
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Figure 2: Boxplot distribution of average bids
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relative to the MCOM treatment when R2 is observed. In contrast, unsophisticated

types should bid equally in both treatments when R2 is observed since strategic un-

certainties should only affect bidding behaviour if subjects know the equilibrium.

Result 4 When two red hats are observed in the red hat puzzle game, there is some

evidence that sophisticated human players “shade” their bids when they know that they

will interact with other human players as opposed to computer-players.

Support for Result 4: Average bids are marginally higher (Mann-Whitney, n= 57, p =
0.092) for sophisticated types in the MCOM relative to MHUM treatments when R2

is observed—no significant differences when R0 (Mann-Whitney, n = 42, p = 0.942)

and R1 (Mann-Whitney, n = 42, p = 0.121) are observed. We find no significant

between treatment differences in the average bids of unsophisticated types when R0,

R1 and R2 (Mann-Whitney, n= 42, p ≥ 0.636 in all comparisons) are observed.

We provide further econometric support for Results 3 and 4 in the Appendix.

5 Conclusion

In this paper we study whether market selection can reduce anomalous behaviour in

games. To do so, we use the red hat puzzle (RHP) game where anomalous behaviour

are linked with players’ inability to perform the necessary steps of logical and episte-

mological reasoning. We use an auction mechanism to allocate the participation rights

into the RHP game. Our experiment shows that auctions significantly decrease devi-

ation from equilibrium play in the RHP game—this holds independently of whether

players in the RHP game interact with human players or computer-players who are

programmed to behave rationally.

Taken together, this experiment shows that market selection can sometimes re-

duce individual anomalous behaviour in games. Our findings suggest that individual

level bounded rationality does not necessarily falsify the applicability of models that

assume fully rational players. This is because with carefully designed incentives, mar-

ket competition can result in the allocation of decision-making rights (i.e., the rights

for performing economic task) to the rational players.

A fruitful line for future research is the influence of market institutions on anoma-

lous behaviour in games. Indeed, a recent study by Deck et al. (2020) find that assets

prices closely tract the fundamental value in the English Dutch Auction mechanism,

while the price is much higher in Double Dutch and Double auction.

In a preliminary study, Choo (2014) embedded continuous double auction (CDA)

asset markets into the RHP game. Here, players trade assets which represent the
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rights to play a variation of the three hat RHP game—a trader with x > 1 will play

the RHP game “as if” he was playing on behalf of x players.48 The experiment finds

that deviations from the equilibrium in the RHP game are more frequent in the asset

market treatment relative to the standard or baseline RHP game. Also, Choo finds

indirect evidence that the inferior performances of the asset market treatment could

be linked to “price bubbles” as assets were often transacted above the equilibrium

price.

An innovation of the asset market treatment is that there can be more than one

player under each of the three hats making decisions in the RHP game—at each pe-

riod t players choose their actions independently and observe the t − 1 actions of

each other players. Choo shows that the equilibrium behaviour in the RHP game is

independent of the number of players under each hat and players under the same

hat should always choose the same action at each period. However, this is rarely ob-

served in the experiment as players under the same hat often chose different actions.

In hindsight, increasing the number of players under each hat might therefore com-

plicate players’ ability to learn about their own hat colour from the actions of others.

Also, subjects may not view the the RHP game decision task in the asset market treat-

ment to be similar to the baseline game. Furthermore, the right resell in CDA markets

provide opportunities for speculative behaviour.49

The previous study raised pertinent questions as to whether the inferior perfor-

mances of the asset market treatment relative to the baseline game capture the failure

of market selection, the distortionary effects of speculation opportunities or the pos-

sibility that increasing the number of players under each hat confuses subjects. This

motivated us to conduct a “cleaner” study where we use auctions without resale op-

portunities to allocated the participation rights to the standard RHP game. We also

elicit players’ types to get a better understanding of their logical reasoning abilities.

In doing so, we show that market competition can reduce anomalous behaviour in the

RHP game. The experiment also offers a path forward as to how asset markets can

be incorporated into the RHP game whilst keeping the decisional problem identical

to the baseline game—a trader with x > 1 assets will play the baseline game x times.

This will be an ambition for future research.
48The experimental design involved three coloured hats with 6 players under each hat. The CDA

markets commence after players under each hat observe the other two hat colours. Players are each
endowed with one asset and trade assets with the other players under the same hat. At the end of the
market, ownership of an asset allows a player to enter the RHP game.

49Harrison and Kreps (1978) write that “investors exhibit speculative behavior if the right to resell
[an] asset makes them willing to pay more for it than they would pay if obliged to hold it forever”.
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ONLINE APPENDIX

A Econometric regressions

A.1 How do subjects’ types affect their behaviour in part II?

We use the Panel Logistic model to study how subjects’ types—determined by their

decisions in part I—affect their “agreement likelihood” (i.e., likelihood of being in

agreement) when observing R2 in part II. The estimates are reported on Table A1.

Dependent variable: Agreement in part II when R2 is observed.

Treatment RCOM+RHUM MCOM+MHUM

Reference group: unsophisticated type in the human treatment
sophisticated 3.15

(1.40)
∗∗ 5.27

(2.47)

∗∗

computer −0.75
(1.30)

−1.48
(1.25)

round 0.03
(0.06)

0.08
(0.09)

sophisticated× computer 2.54
(1.29)

∗ 1.94
(1.44)

sophisticated× round 0.00
(0.09)

−0.16
(0.16)

Constant −2.00
(0.79)

∗∗ −1.63
(0.26)

∗∗∗

n obs. 156 143
n subjects 89 56

Note. “sophisticated” and “computer” are situation dummy variables. Standard errors clustered at the
matching group level.
∗∗∗: p < 0.01, ∗∗: p < 0.05, ∗: p < 0.10.

Table A1: Panel logistic estimates: How behaviour in part II depend on subjects’ type.

We see that agreement likelihood are significantly higher for sophisticated relative

to unsophisticated types in the random (p = 0.025) and auction (p = 0.033) treat-

ments. To test for learning, we examine whether the agreement likelihood increases

with rounds for the unsophisticated type—sophisticated types are assumed to already

know the equilibrium solution. We find no evidence for learning as the coefficient es-

timates for “rounds” and “rounds×sophisticated” are not significant (p > 0.301) at

any reasonable levels. If strategic uncertainty influences behaviour in the RHP game,

we should expect sophisticated types’ agreement likelihood to be higher in the com-

puter relative to human treatments—unsophisticated types should not be affected

since they do not know the equilibrium. We see some evidence for this in the ran-

dom treatments: for sophisticated types, agreement likelihood is significantly lower
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(p = 0.050) in the RHUM relative to RCOM treatments. In contrast, agreement likeli-

hood for sophisticated types in the MCOM and MHUM treatments are not significantly

different (p = 0.180).

A.2 The influence of Market selection

We use the panel logistic model to study whether selected subjects in the auction

treatments (relative to those in the random treatments) are more likely to be (i) in

agreement and (ii) classified as sophisticated types when R2 is observed—it is difficult

to control for the proportion of sophisticated types when studying behaviour at the

individual level. The estimates are reported on Table A2.

Dependent variable Agreement Sophisticated

auction 3.26
(1.18)

∗ 6.69
(3.57)

∗

computer 1.10
(1.14)

1.02
(0.99)

auction×computer −2.44
(1.58)

−4.95
(3.78)

Constant −0.13
(0.70)

0.05
(0.36)

n obs. 299 299
n subjects 145 145

Note. “auction” and “computer” are situation dummy variables. Standard errors clustered at the match-
ing group level.
∗∗∗: p < 0.01, ∗∗: p < 0.05, ∗: p < 0.10.

Table A2: Panel logistic estimates: The influence of market selection on agreement
likelihood and the types of subjects selected into the RHP game.

The estimates find that subjects in the auction treatments are significantly more

likely to be in agreement (p = 0.060) and be classified as sophisticated types (p =
0.061). In addition to the above, playing against computer as opposed to human

players has not significant marginal influences for subjects in the auction (p ≥ 0.190)

or random (p ≥ 0.294) treatments.

A.3 Bidding behaviour

All subjects in the MCOM and MHUM treatments independently submitted their bids

at the start of the round. We use the random-effects GLS to study the bidding be-

haviour of sophisticated and unsophisticated types. The estimates are reported on

Table A3.
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Treatment MCOM MHUM

R0 R1 R2 R0 R1 R2

Reference group = Unsophisticated type
Sophisticated
type

-20.82
(15.77)

-9.71
(9.56)

229
(62)

∗∗∗ -51.10
(41.96)

- 9.15
(69.35)

139
(65.26)

∗∗

Constant 998
(9.08)

∗∗∗ 864
(12.53)

∗∗∗ 525
(52.31)

∗∗∗ 1017
(17.85)

∗∗∗ 820
(56.05)

∗∗∗ 520∗∗∗
(25.96)

# of obs. 144 432 234 120 360 195
# of subjects 54 54 54 45 45 45
# of groups 6 6 6 5 5 5

Note. Standard errors clustered at the matching group level.
∗∗∗, ∗∗ and ∗ indicate p<0.01, p<0.05 and p<0.10, respectively.

Table A3: Random-Effects GLS estimates: Do sophisticate types bid higher than un-
sophisticated types?

We find no significant between type differences in bids (p ≥ 0.197) when subjects

observe R0 and R1. When subjects observe R2, we find bids in the MCOM (p < 0.001)

and MHUM (p = 0.033) to be significantly higher for sophisticated relative to unso-

phisticated types.

We also study the bidding behaviour of sophisticated and unsophisticated types

across the MCOM and MHUM treatments. The estimates are reported on Table A4. We

find no significant between treatment differences (p ≥ 0.119) in the bids of sophisti-

cated and unsophisticated types when subjects observe R0 and R1. When subjects ob-

serve R2, the results show that sophisticated types bid significantly lower (p = 0.085)

in the MHUM relative to MCOM treatments. In contrast, we find no significant differ-

ences (p = 0.995) in the bids for unsophisticated types.

Treatment Unsophisticated types Sophisticated types

R0 R1 R2 R0 R1 R2

Reference group = MCOM
MHUM 17.72

(18.90)
-44.07
(54.54)

-4.669
(55.78)

-13.37
(39.39)

-43.39
(27.81)

-95.08
(55.28)

∗

Constant 999
(8.70)

∗∗∗ 864
(12.10)

∗∗∗ 525
(50.10)

∗∗∗ 977
(12.71)

∗∗∗ 854
(17.11)

∗∗∗ 755
(18.95)

∗∗∗

# of obs. 106 342 182 158 450 247
# of subjects 42 42 42 57 57 57
# of groups 11 11 11 11 11 11

Note. Standard errors clustered at the matching group level.
∗∗∗, ∗∗ and ∗ indicate p<0.01, p<0.05 and p<0.10, respectively.

Table A4: Random-Effects GLS estimates: Do unsophisticated and sophisticate types
bid differently aacross treatments?
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B Computer rules

The equilibrium behaviour in the RHP game is for each player to choose aN at periods

t < r + 1 and at period t = r + 1, choose aR (resp. aB) if her hat is red (resp. black).

The computer-players are programmed with the following rules:

Rule-1: Choose aB in period 1 if r = 0 and the public signal is “there are no red hats”.

Rule-2: Choose aR in period 1 if r = 0 and the public signal is “there is at least one

red hat”.

Rule-3: Choose aN in period 1 if r > 0.

Rule-4: Choose aN in period 1 < t < r + 1 if r > 0 and the other red hat player(s)

chooses aN in period t − 1.

Rule-5: Choose aR in period t = r+1 if r > 0 and the other red hat player(s) chooses

aN in period t − 1.

Rule-6: Choose aB in period t = r+1 if r > 0 and the other red hat player(s) chooses

aR in period t − 1.

Rule-7 Uniformly randomise between aB and aR at period t > 1 if the above rules

cannot be accomplished.

Rules 1–6 imply that the computer-players will best-respond at each period t given

their observations r, the public signal and the previous period’s actions of the other

players. The computer-players can be incorrect about their own hat colour if the

human player deviates from the equilibrium path in a manner that is undetectable.

Table B1 shows one such example. Here, there is only one red hat and each computer

player observes r = 1. The human player chooses aN in period 1 (as opposed to

aR). This incorrectly informs the computer players that their hats are red — they had

choose aR in period 2. In period 3, the human ends the RHP game — he observes that

the two other computer-players choose aR in period 2.

Rule 7 implies that the computer-player will randomise if it detects that some

player had deviated from the equilibrium path. Table B2 provides an example. Here,

the human player chooses aR in period 1 (as opposed to aN ). This deviation is un-

detected by the centre computer-player who responds by choosing aB in period 2. In

contrast, the right computer-player knows that the human-player has deviated from

the equilibrium path. Anticipating that it will no longer be able to resolve its own hat

colour, it therefore randomises between aR and aB.
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Players Human Computer Computer
Hat Red Black Black
Observe r = 0 r = 1 r = 1

Period 1 aN aN aN
Period 2 aN aR aR
Period 3 aR - -
Period 4 - - -

Table B1: Example 1

Players Human Computer Computer
Hat Red Red Black
Observe r = 1 r = 1 r = 2

Period 1 aR aN aN
Period 2 - aB randomise
Period 3 - - -
Period 4 - - -

Table B2: Example 2

Players Human Computer Computer
Hat Red Red Red
Observe r = 2 r = 2 r = 2

Period 1 aN aN aN
Period 2 aR aN aN
Period 3 - randomise randomise
Period 4 - - -

Table B3: Example 3
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In Example 3 (Table B3), we see that the human player chooses aN in period 1 and

aR in period 2. In period 3, the computer-players immediately know that someone

had deviated from the equilibrium since it cannot be that one red hat player chooses

aN and the other chooses aR. The computer players thus randomise in period 3.
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C Experiment instructions.

The following subsections detail the translated version of the instructions (the instruc-

tions were written in Mandarin). The experiment consists of two parts (I and II) and

subjects only received the instructions for part II at the end of part I.

Where necessary in part II, we use “text” and “text" to distinguish between sen-

tences that are unique to the computer (RCOM and MCOM) and human (RHUM and

MHUM) treatments, respectively. We also use “text" and “text" to distinguish between

sentences that are unique to the random (RCOM and RHUM) and auction (MCOM

and MHUM) mechanism treatments, respectively.

Subjects received the instructions for parts I and II on their desk. The experimenter

also read the instructions together with the subjects. To ensure that all subjects under-

stood the experiment design, they had to correctly answer a series of control questions

at the start of each part.
For readability, all references to Tables, Figures and Section in the instructions will

be labelled by the appendix order.

C.1 Instructions Part I

First of all, thank you for your participation! Please note that you are not allowed to talk with

other participants during this experiment. If you have a question, please raise your hand and

we will answer you privately. In order to minimise distractions, please turn off your mobile

phone and put away anything that could distract you from the experiment (e.g. books, study

notes or electronic devices). You are only allowed to use the computer for the purposes of this

experiment. Note that violation of the laboratory rules may lead to an immediate exclusion

from the experiment.

At no time during this study will you learn the identity of the other participants you in-

teract with. Also, no other participants will learn about your experimental earnings: At the

end of the study, the amount of money you have earned will be paid out to you privately. If

you follow the instructions and apply them carefully, you can earn some money in additional

to the 10 yuan show-up fee which we will give you in any case.

The experiment will consist of two parts (Part I and Part II). Your earnings in this ex-

periment will depend on your decisions in Parts I and II. In the following, we present the

instructions for Part I. The Part II instructions will be available at the end of Part I.

C.1.1 Part I.

Part I of the experiment will consist of one practice (non-paying) round and five decision-

making rounds. At each round, you will participate in the guessing game and earn points.

The amount of points earned will depend on your decisions in the guessing game. At the end
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Outcome O1 O2 O3 O4 O5 O6 O7 O8

Player A’s Hat Black Black Black Red Black Red Red Red
Player B’s Hat Black Black Red Black Red Black Red Red
Player C’s Hat Black Red Black Black Red Red Black Red

Table C1

of Part I, the computer will randomly pick one of the five decision-making rounds for payment.

Your points in that round will be converted into cash at the exchange rate of 1 point = 0.023

yuan. The instructions are organised as follows:

• Section C.1.2 will detail the guessing game.

• Section C.1.3 will provide further information as to the other participants you will

interact with in the guessing game.

• Section C.1.4 is a set of control questions to ensure that you understand the experiment

design.

C.1.2 The guessing game.

There are 3 players (player A, player B and player C). Each player is given a hat which could

either be Red or Black with equal chance. Each player does not observe his own hat colour.

Each player observes the hat colour of the other two players. Each player receives a hint about

the total number of red hats. There are two possible hints

• Hint 1: There is at least one red hat (i.e., one or more of the players has a red hat).

• Hint 2: There are no red hats (i.e., all players have black hats).

Table C1 provides a summary of all possible outcomes in the guessing game—each outcome is

equally likely. Here are some examples to help you better understand the setup of the guessing

game.

Example: Suppose that all hats are red (outcome O8 on Table C1). Then all players will

be informed that “there is at least one red hat". Player A observes that B’s and C’s hats are

red. Player B observes that A’s and C’s hats are red. Player C observes that A’s and B’s hats are

red.

Example: Suppose that only players A and B have red hats (outcome O7 on Table C1).

Again, all players will be informed that “there is at least one red hat". Player A observes that

B’s hat is red and C’s hat is black. Player B observes that A’s hat is red and C’s hat is black.

Player C observes that A’s and B’s hats are red.

Example: Suppose that all hats are black (outcome O1 on Table C1) and all players are

informed that “there are no red hats". Player A observes that B’s and C’s hats are black. Player

B observes that A’s and C’s hats are black. Player C observes that A’s and B’s hats are black.
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Player A (you) Hat
colour: ??

Player B Hat
colour: Red

Player C Hat
colour: Black

Decisions in Period 1 (WAIT) (RED) (WAIT)

Table C2

** Reminder. You may sometimes learn about your own hat colour through the hint that

receive and your observations about the other players’ hats. Note that there is always an equal

chance that your hat is red or black.**

Your task in the guessing game is to guess the colour of your own hat. There are 4 guessing

opportunities which we call periods (i.e., period 1, period 2, period 3 and period 4). At each

period, you will see the question:

“What is the colour of your hat?"

and you can respond with the following choices: (RED) My hat is Red, (BLACK) My hat is

Black, (WAIT) I dont yet know the colour of my hat.

The rules are as follows:

• You end the guessing game when (RED) or (BLACK) is chosen. Example: If you choose

(RED) in period 1, you end the guessing game in period 1.

• You only proceed to the next period when (WAIT) is chosen. Example: If you choose

(WAIT) in period 1, you will proceed to period 2 where you will again see the same

question “What is the colour of your hat".

• The choices of all players are public information in the following period. Example: If

you are in period 2, you will observe the period 1 choices of the other two players.

• You can only choose between (RED) or (BLACK) in period 4.

Here are some examples to help you understand your task in the guessing game.

Example: Suppose that you are player A and you see that Bs hat is red and C’s hat is black.

In period 1, you see the question “what is your hat colour" and you choose (RED). You ended

the guessing game in period 1.

Example: Suppose that you are player A and you see that B’s hat is red and C’s hat is black.

In period 1, you see the question “what is your hat colour" and you chose (WAIT). In period

2, you will again see the question “what is your hat colour". In addition, you are provided

information about the choices of the other players in period 1. Table C2 is an example of what

you might observe. You see that player B chose (RED) in period 1. You also see that player C

chose (WAIT) in period 1.

Example: Suppose that you are player A and you see that B’s hat is red and C’s hat is

black. In period 1, you see the question “what is your hat colour" and you chose (WAIT).

In period 2, you will again see the question “what is your hat colour" and the choices of the
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Player A (you) Hat
colour: ??

Player B Hat
colour: Red

Player C Hat
colour: Black

Decisions in Period 1 (WAIT) (RED) (WAIT)
Decisions in Period 2 (WAIT) - (BLACK)

Table C3

You chose (RED) or
(BLACK) and your guess

is correct

You chose (RED) or
(BLACK) and your guess

is incorrect
End guessing game in Period 1 1000 points 300 points
End guessing game in Period 2 900 points 200 points
End guessing game in Period 3 800 points 100 points
End guessing game in Period 4 700 points 0 points

Table C4

other players in period 1. Suppose that you chose (WAIT). In period 3, you will again see

the question “what is your hat colour" and the choices of the other players in period 2. Table

C3 is an example of what you might observe in period 3. Here, you see that player B did

not participate in period 2 (i.e., he ended the guessing game in period 1) and player C chose

(BLACK) in period 2.

** Reminder: At every period, you will see the decisions of the other players from the

previous period. You may possibly learn about your own hat colour through the decisions of

others.**

The points that you earn in the guessing game will depend on: (a) The period that you

end the guessing game, (b) Whether you were correct or incorrect about your own hat colour.

Table C4 summarises how your points are computed. You can see that you start the guessing

game with 1000 points and receive a 100 points deduction each time you choose (WAIT).

When you end the guessing game, you receive no deductions i f you guessed correctly. How-

ever, you receive a deduction of 700 points if you guessed incorrectly. Here are some examples

to help you understand how your points are computed.

Example: Suppose that your hat is Black. You choose (WAIT) in period 1 and (BLACK) in

period 2. You receive 1000− 100= 900 points.

Example: Suppose that your hat is Black. You choose (WAIT) in period 1 and (RED) in

period 2. You receive 1000− 100− 700= 200 points.

Example: Suppose that your hat is Black. You choose (WAIT) in period 1 and (WAIT) in

period 2 and (BLACK) in period 3. You receive 1000− 100− 100= 800 points.

Example: Suppose that your hat is Black. You choose (WAIT) in period 1 and (WAIT) in

period 2 and (RED) in period 3. You receive 1000− 100− 100− 700= 100 points.

** Reminders. Notice from Table C4 that each player maximises his own points by cor-

rectly guessing his own hat colour in the soonest possible period. Hence, it may be possible to
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learn about your hat colour through the decisions of other players. In setting up the guessing

game, there is always an equal chance that your hat is red or black. This means that if you do

not know your hat colour but chose (BLACK) in period 1, there is an equal chance that you

are correct or incorrect.**

C.1.3 Information about the other participants that you interact with in the

guessing game.

At each round, you will be interacting with computer-players in the guessing game. This

means that:

• If you are player A, then players B and C are computers.

• If you are player B, then players A and C are computers.

• If you are player C, then players A and B are computers.

The computer players are programmed to be in a similar position as yourself and can never

cheat. This means that they observe your hat colour and the hat colours of their fellow com-

puter players but not their own hat colour. Their decisions at each period will depend on the

number of black and red hats that they observe, your decisions in the guessing game and the

decision of the other computer player in the guessing game.

The computer-players are programmed to: (i) To always maximise their own points, (ii)

To always guess their own hat colour in a logical manner. This means that it will base its

decisions on the hint received, its observations of the other hat colours and the decisions of

the other players in the guessing game.

C.1.4 Control questions

Please answer the following control questions on the computer.

Q1. What is the probability that you are given a red hat? (25%; 50%, 75%)

Q2. Suppose that outcome O3 (see Table C1) is chosen. Player A will observe a total of ___

red hat(s).

Q3. Suppose that outcome O8 (see Table C1) is chosen. Player A will observe a total of ___

red hat(s).

Q4. If you choose (BLACK) in period 1, you will proceed to period 2. (True; False)

Q5. If you choose (WAIT) in period 1, you will proceed to period 2. (True; False)

Q6a. Suppose that you are Player A and you chose (WAIT) in period 1 and (WAIT) in period

2. In period 3, you observe the following (see Table C5). Player C chose (WAIT) in

period 1 and (RED) in period 2. (True; False)
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Player A (you) Player B Player C

Decisions in Period 1 (WAIT) (BLACK) (WAIT)
Decisions in Period 2 (WAIT) - (RED)

Table C5

Q6b. Player B did not proceed to period 2. (True; False)

Q6c. Player C will proceed to period 3. (True; False)

Q7. Suppose that your hat is red. You chose (WAIT) in period 1 and (RED) in period 2. You

receive ___ points.

Q8. Suppose that your hat is red. You chose (WAIT) in period 1 and (BLACK) in period 2.

You receive ___ points.

Q9. Suppose that your hat is red. You chose (WAIT) in period 1, (WAIT) in period 2 and

(RED) in period 3. You receive ___ points.

Q10. Suppose that your hat is red. You chose (WAIT) in period 1, (WAIT) in period 2 and

(BLACK) in period 3. You receive ___ points.

Q11. At each round of the guessing game, the other participants that you interact with are

computer-players. (True; False)

Q12. If you are player A, then Players B and C are computers. (True; False)

Q13. At each period of the guessing game, the computer players are programmed to always

submit the most logical decision. (True; False)

C.2 Part II.

Part II of the experiment consists of 1 practice (nonpaying) rounds and 15 decision-making

rounds. At each round, you will earn points. The amount of points earned in each round will

depend on your decisions in that round. At the end of Part II, the computer will randomly pick

3 of the 15 rounds for payment. Your points in that round will be converted into RMB at the

exchange rate of 1 point = 0.023 yuan. The following instructions are organised as follows:

• Section C.2.1 will detail the experimental design of a round.

• Section C.2.2 will provide further information as to the other participants you will

interact with in each round in the guessing game.

• Section C.2.3 is a set of control questions to ensure that you understand the experiment

design.
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C.2.1 Description of an experimental round.

You and two other participants in this room will be randomly paired together to form a group

(each group consists of three participants). One participant in your group will receive a ticket.

The ticket enables the owner to:

• Participate in the guessing game. That is, only the ticket owner will be one of the

Hat-players in the guessing game.

• Receive points from participating in the guessing game.

** Reminder: The guessing game consist of exactly three hat-players. The participant in your

group who is allocated the ticket will be one of the three hat-players. We will provide further

information about the other hat-players in Section C.2.2 of the instructions. **

There are four stages in each round:

• Stage 1: You are provided some information about the guessing game.

• Stage 2: One participant in your group will receive the ticket.

• Stage 3: The participant with the ticket will participate in the Guessing game.

• Stage 4: The payoffs for all participants are computed.

In the next few pages, we will explain each stage in detail.

STAGE I. Information about the guessing game

As in part I of the experiment, the relevant information about the guessing game is the number

of other red hats that you observe and the hint that you receive as a Hat-player in the guessing

game. There are three hats (hats A, B and C). Each hat is assigned a colour which can be red or

black with equal chance. Your group will be randomly assigned to one of the hats. (remember

that you and two other participants in this room will be paired together to form a group).

** Reminder. After this assignment, the hat colour of each hat is fixed for the round. **

You cannot observe your own hat colour but can observe the colour of the other hats. In

addition, you will also receive the hint:

• Hint 1: There is at least one red hat amongst the three hats.

• Hint 2: There are NO red hats amongst the three hats.

Suppose that your group is assigned to hat A. This means that all participants in your group

(including yourself) will observe the colour of hats B and C (but not hat A). Also, all partici-

pants in your group will receive the same hint (either hint 1 or hint 2). Table C6 provides a

summary of all possible outcomes.

Example: Suppose that your group is assigned to hat A and the computer chooses O5. All

participants in your group will observe that hats B and C are red, and receive the hint that
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Outcome O1 O2 O3 O4 O5 O6 O7 O8

Hat A Black Black Black Red Black Red Red Red
Hat B Black Black Red Black Red Black Red Red
Hat C Black Red Black Black Red Red Black Red

Table C6

“there is at least one red hat amongst the three hats". However, no participant in your group

observes the colour for hat A.

Example: Suppose that your group is assigned to hat B and the computer chooses O2. All

participants in your group will observe that hat A is black and hat C is red. All participants

in your group will receive the hint that “there is at least one red hat amongst the three hats".

However, no participant in your group observes the colour for hat B.

STAGE II. Allocating the Ticket

After all participants in your group have received the information about the guessing game,

the ticket is allocated to one of the three participants within your group.

The tickets will be randomly assigned in your group. In other words, the computer ran-

domly picks one of the three participants within your group and gives him the ticket. Please

note: Team members who do not receive tickets will receive 1500 points. The team member

who gets the ticket will receive 620 points, in addition to his earnings in the guessing game.

We will use an auction to sell the ticket. Each participant is given 1500 points. Thereafter,

each participant in your group submits a bid. A bid is the maximum amount you are willing

to pay for the ticket.

** Important: The minimal bid amount you can submit is 0 points. The maximum bid

amount you can submit is 1500 points. **

After all participants in your group have submitted their bids, we will rank the 3 bids and

sell the ticket to the participant with the highest bid. The “ticket owner" (i.e., the participant

who receives the ticket) is therefore the participant with the highest bid in your group. How-

ever, the ticker owner will only need to pay the second highest bid amount. If there are more

than one participants with the same highest bids, the ticket owner will be randomly selected

amongst the participants who submitted the highest bids. Table C7 shows three examples to

help you better understand how the tickets are sold. In all examples, your group has been

allocated to hat A. We therefore label participants A1, A2 and A3 as the first, second and third

participants in the group, respectively.

Example: Participants A1, A2 and A3 bid 100 points, 200 points and 300 points, respec-

tively. The ticket owner is A3 as he had submitted the highest bid (i.e., 300 points). The

second highest-bid is 200 points. In this example, participant A3 only pays 200 points for the

ticket.
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Example 1 Example 2 Example 3

Participants in
your group

A1 A2 A3 A1 A2 A3 A1 A2 A3

Bid (points) 100 200 300 100 200 100 100 200 200
Ranks within
each group

3 2 1 2 1 2 2 1 1

ticker owner A3 A2 A3
Price paid by
ticket owner

200 points 100 points 200 points

Table C7: Only applicable to the auction mechanism treatments

Example: Participants A1, A2 and A3 bid 100 points, 200 points and 100 points, re-

spectively. The ticket owner is A2. The second highest-bid is 100 points. In this example,

participant A2 only pays 100 points for the ticket.

Example: Participants A1, A2 and A3 bid 100 points, 200 points and 200 points, respec-

tively. Here, the highest bids are by participants A2 and A3–there is a draw and the computer

will randomly determine whether participant A2 or A3 will be the ticket owner. This also

means that the highest and second highest bids are both 200 points. In this example, partici-

pant A3 is randomly selected by the computer to be the ticket owner. Participant A3 purchases

the ticket at 200 points.

** Reminder: Note that ticket holder will never pay more than his bid. In fact, the ticket

holder may even sometimes pay less than his bid (i.e., if the second highest bid is less than

the ticket holder’s bid). **

STAGE III. Participating in the Guessing game

Only the participant with a ticket will participate in the guessing game (i.e., he will be a hat

player in the guessing game).

Example: Suppose that participants 1, 2 and 3 are randomly assigned to hat A, and the

ticket is sold randomly given to participant 2. This means that participant 2 will be hat-player

A in the guessing game.

Example: Suppose that participants 1, 2 and 3 are randomly assigned to hat B, and the

ticket is sold randomly given to participant 2. This means that participant 2 will be hat player

B in the guessing game.

STAGE IV. Computing payoffs

Your points will depend on (a) Whether you received a ticket and (b) If you received a ticket,

whether you correctly guess your hat colour in the guessing game. If you did not receive

a ticket, your payoff is 1500 points. If you received a ticket, your payoff depends on your

decision in the guessing game with regards to your hat colour i.e., Payoff= 620+ (Points from

the guessing game) Table 2 below summaries the possible earnings in the guessing game.
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You chose (RED) or
(BLACK) and your guess

is correct

You chose (RED) or
(BLACK) and your guess

is incorrect
End guessing game in Period 1 1000 points 300 points
End guessing game in Period 2 900 points 200 points
End guessing game in Period 3 800 points 100 points
End guessing game in Period 4 700 points 0 points

Table C8

Your points will depend on (a) Whether you purchased a ticket and (b) If you purchased

a ticket, whether you correctly guess your hat colour in the guessing game. If you did not

purchase a ticket, your payoff is simply your endowment (i.e., 1500 points). If you purchased

a ticket, your payoff depends on the purchase price and your decision in the guessing game

with regards to your hat colour i.e., Payoff = 1500-(Ticket purchase price)+(Points from the

guessing game)

Table C8 again details the ticket holder’s (i.e., the hat player) payoff from the guessing

game which depends on the period that the ticket holder ends the guessing game and whether

he is correct. Here are some examples to help you better understand how your payoff is

computed.

Example: Suppose that participants 1, 2 and 3 are randomly assigned to hat A. Partici-

pant 2 enters the guessing game as hat player A (receives the ticket). In the guessing game,

hat player A (participant 2) chooses (WAIT) in period 1 and (RED) in period 2. If hat A is

red, the payoffs to participants 1, 2 and 3 are: (participant 1) 1500 points, (participant 2)

620+900=1520 points, (participant 3) 1500 points. Note: participants 1 and 2 receive 1500

points as they did not participate in the guessing game.

Example: Suppose that participants 1, 2 and 3 are randomly assigned to hat A, and the

ticket is sold to participant 2 at the price of 500 points. Participant 2 enters the guessing game

as hat player A. In the guessing game, hat player A (participant 2) chooses (WAIT) in period 1

and (RED) in period 2. If hat A is red, the payoffs to participants 1, 2 and 3 are: (participant 1)

1500 points, (participant 2) 1500-500+900=1900 points, (participant 3) 1500 points. Note:

participants 1 and 2 receive 1500 points as they did not participate in the guessing game.

Example: Suppose that participants 1, 2 and 3 are randomly assigned to Hat A. Partici-

pant 2 enters the guessing game as hat player A (receives the ticket). In the guessing game,

participant 2 chooses (WAIT) in period 1 and (BLACK) in period 2. If hat A is red, the payoffs

to participants 1, 2 and 3 are: (participant 1) 1500 points, (participant 2) 620+200=820

points, (participant 3) 1500 points.

Example: Suppose that participants 1, 2 and 3 are randomly assigned to Hat A, and the

ticket is sold to participant 2 at the price of 500 points. Participant 2 enters the guessing game

as hat player A. In the guessing game, participant 2 chooses (WAIT) in period 1 and (BLACK)

in period 2. If hat A is red, the payoffs to participants 1, 2 and 3 are: (participant 1) 1500
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points, (participant 2) 1500-500+200=1200 points, (participant 3) 1500 points.

C.2.2 Information about the other hat players.

As in part I of the experiment, the other players that are assigned to the hats, besides your group’s

hat, are computer players.

Example: If your group is randomly assigned to hat A, then the hat A player in the guessing

game will be the ticket holder from your group. In contrast, the hat B and hat C players in the

guessing game will be computer players.

Example: If your group is randomly assigned to hat B, then the hat B player in the guessing

game will be the ticket holder from your group. In contrast, the hat A and hat C players in the

guessing game will be computer players.

** Reminder. The computer players are programmed to be in a similar position as you. They

observe your hat colour and the hat colours of their fellow computer players but not their own hat

colour. Their decisions at each period will depend on the number of black and red hats that they

observe and the choices that all hat players make across the different periods. Also, the computer

hat players are programmed to: (a) Where possible, to always maximise their own payoffs, (b)

Where possible, to always predict their own hat colour in a logical manner, (c) The computer hat

players cannot “cheat". They will try to correctly predict their own hat through a logical manner.

**

Please note that unlike the first part of the experiment, the other two players who partic-

ipate in the guessing game are not computer players, but are selected from their respective

groups. They are chosen in a similar manner as you: they are players in the other two groups

that are [randomly selected by the program to get tickets] / [purchased a ticket].

Example: If your group is randomly assigned to hat A, then the hat A player in the guessing

game will be the ticket holder from your group. The hat B player: the [randomly selected par-

ticipant] / [participant who purchased a ticket] amongst the group of three participants under

hat B. The hat C player: the [randomly selected participant] / [participant who purchased a

ticket] amongst the group of three participants under hat C.

Example: If your group is randomly assigned to hat B, then the hat B player in the guessing

game will be the ticket holder from your group. The hat A player: the [randomly selected par-

ticipant] / [participant who purchased a ticket] amongst the group of three participants under

hat A. The hat C player: the [randomly selected participant] / [participant who purchased a

ticket] amongst the group of three participants under hat C.

C.2.3 Control questions.

Please answer the following control questions

1. At each round you will be randomly matched with two other participants in this room

to form a group. (True/False)
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2. In each round, your group will be randomly assigned to one hat. (True/False)

3. In each round, what is the probability that your group is assigned to a black hat is ___ .

4. You see the colour of your group’s hat. (True/False)

5. You see the colour of the other groups’ hats (True/False)

6. The other two participants in your group have the same information about the guessing

game as you have. (True/False)

7. Only one participant in your group will receive a ticket. (True/False)

8. If you purchased a ticket, can the purchase price be higher than your bid? (Yes/No)

9. If you purchased a ticket, can the purchase price be lower than your bid? (Yes/No)

10. Suppose that participants A1, A2 and A3 (participants in Hat A) bid 20, 20 and 30

points, respectively.

• Who will receive the ticket?

• How much will that participant have to pay for the ticket?

11. Suppose that participants A1, A2 and A3 (participants in Hat A) bid 15, 25 and 20

points, respectively.

• Who will receive the ticket?

• How much will that participant have to pay for the ticket?

12. Suppose that participants A1, A2 and A3 (participants in Hat A) bid 5, 30 and 50 points,

respectively. Suppose that there are three participants in Hat A (A1, A2 and A3) and

participant A3 is randomly chosen to receive the ticket. In the guessing game, the Hat

A player chooses (WAIT) in period 1 and (RED) in period 2. Suppose that hat A is red.

• Participant A1 points: ___.

• Participant A2 points: ___.

• Participant A3 points: ___.

13. Suppose that participants A1, A2 and A3 (participants in Hat A) bid 5, 30 and 50 points,

respectively. Suppose that there are three participants in Hat A (A1, A2 and A3) and

participant A3 is randomly chosen to receive the ticket. In the guessing game, the Hat

A player chooses (WAIT) in period 1 and (BLACK) in period 2. Suppose that hat A is

red.

• Participant A1 points: ___.
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• Participant A2 points: ___.

• Participant A3 points: ___.

14. If your group is randomly allocated to Hat B, then Hat player A and Hat player C in the

guessing game will be computer players. (True/False)
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