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Abstract

We study contests with technological uncertainty—where agents can develop
different technologies to compete, but it is uncertain which technology is the
best. An experiment that reveals information about the merit of each technology
can focus efforts onto better technologies, but it can also reduce technological
diversification. We characterize the optimal experiment, which depends on the
value of diversification, the informativeness of available experiments, and the
asymmetry of technologies. We also study the interaction between prize and
information design: the extent of information disclosure decreases with the size
of the prize and the number of competitors.
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1 Introduction

Many contests feature technological uncertainty: there are multiple technologies, ap-
proaches, or methods that contestants could pursue to compete in the contest, and it is
not clear which of these will ultimately be successful. In prediction competitions hosted
either on digital platforms (e.g. Kaggle or Innocentive) or by a firm (e.g. Netflix), there
are multiple algorithms that agents can use. In agricultural yield contests, such as those
sponsored by the National Corn Growers Association, farmers compete to produce the
highest yield and can use different methods whose performance is subject to uncertainty
(e.g. the yield may be affected by the weather or the soil). Technological uncertainty
is also present in procurement contests, such as those hosted by the U.S. Department
of Defense, where contestants may not fully know the preferences of the procurer over
different possible attributes or designs that could be developed. Similarly, technological
uncertainty is present in contest-like settings within organizations: competing workers
face uncertainty regarding the impact of different tasks on their promotion chances.

Both uncertainty and competitive pressures affect the agents’ decisions of how much
effort to invest into each technology. Uncertainty means that some agents will inevitably
work on technologies that will turn out to be unsuccessful. For this reason, incentivizing
agents to develop multiple approaches increases the principal’s chances to ultimately
implement a successful technology. However, diversification across technologies also
reduces the total amount of effort devoted to developing the best technology, which
reduces the principal’s payoff from implementing the best technology. In such a setting,
the principal may be able to reveal some information regarding the different technologies
to affect the agents’ beliefs about the prospects of the different alternatives, which in
turn changes the equilibrium allocation of effort across technologies in the contest.

Public information revelation is a feature of many contest settings. In prediction con-
tests, the contest sponsor (the principal) provides data that contestants use to train and
develop their algorithms; these data reveal information about the probability of success
of different algorithms, and hence the contestants can use these data to choose which
approach to develop. Furthermore, the principal wants to avoid “over-fitting,” i.e., algo-
rithms that perform well on one dataset but not in general, and seeks to incentivize the
contestants to develop algorithms that are valuable beyond the existing data. In yield
contests, the principal can reveal the performance of agricultural approaches used in the
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past, although this is not a guarantee that these approaches will work well in the future
because, for example, weather conditions could be different. In procurement contests,
participants submit designs and prototypes that can be evaluated by the procurer at
some preliminary stage. Revealing these evaluations will affect the contestants’ beliefs
about the likelihood of success of each design, which in turn will affect the contestants’
choices of what to develop subsequently.

We introduce a model to study technological uncertainty in contests and characterize
how much information the principal should reveal to maximize the value of the contest.
Depending on the prior belief regarding the technologies, revealing information can
steer agents to focus more on one specific technology or to diversify their effort across
technologies.

The principal’s optimal policy balances the trade-off between providing the agents with
better information about the technologies and exploiting the option value of diversifi-
cation. In our model agents compete in a contest and choose how much effort to exert
in developing each of multiple possible technologies.1 Only one of these technologies
works—this is the “best” technology—and it is the method or technology that will be
implemented ex post by the principal. Neither the agents nor the principal are informed
ex ante about which technology is the best one. The principal designs a public exper-
iment and commits to its result in order to reveal information to the agents regarding
the value or likelihood-of-success of each technology. The information revealed by the
experiment is useful to assess the merits of each technology, but it may induce an equi-
librium where too many agents choose the more promising technology and there is too
little technological diversification from the perspective of the principal.

We characterize the optimal information structure that maximizes the principal’s ex-
pected payoff from the contest. The main trade-off is one between diversification and
focus: revealing more precise information induces agents to focus on more promising
technologies, but if the agents rationally over-react to such information in equilibrium,
then this may lead to too little diversification from the principal’s perspective. As a
result of this trade-off, we find that the optimal policy can be either maximally infor-
mative, partially informative, or completely uninformative, depending on the features

1These different technologies may represent different approaches to solve a problem in the case of
innovation; different characteristics, features, or designs in the case of procurement; or different tasks
or projects in the case of a worker competing within an organization.
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of the environment. Whether the principal wants to reveal or hide information depends
critically on three factors: (i) the value of technological diversification; (ii) the quality
of the principal’s information; and (iii) the extent of technological uncertainty.

First, developing multiple different approaches has an option value: even if one tech-
nology looks more promising than another ex ante, the latter may turn out to be more
valuable in the long run. The larger this value of diversification, which turns out to be
related to a measure of risk aversion associated with the principal’s objective function,
the more likely it is that the principal chooses not to reveal information.

Second, the quality of the principal’s information matters: if she can design a very in-
formative experiment, i.e., an experiment that reveals with very high probability which
technology is the right one, then she is more likely to want to reveal such information.
In practice, however, the principal may not have access to very informative signals, in
which case she may prefer to reveal less information.

Third, the extent of technological uncertainty reflects how similar or asymmetric the
different approaches are a priori. If the agents’ beliefs about the technologies are ex
ante very asymmetric, the principal may want to reveal information to either reinforce
or weaken the extent of this asymmetry. The more symmetric the technologies are ex
ante, the more likely it is that the principal will choose to not reveal information.

We also study the relationship between information design and more traditional contest
design aspects, such as the number of competitors and the size of the prize in the contest.
We find that, in contests with more competitors or larger prizes, the optimal design
features less information disclosure. This is because when the prize is larger or there
are more agents competing, the value of diversification across technologies tends to be
larger for the principal. Hence the value of disclosing information and focusing efforts
towards one technology or another is generally lower than the value of diversification,
as there is more effort invested in each technology.

We then explore the interaction between the amount of information disclosure and
the optimal size of the prize. We find that information design generally adds value
above and beyond what can be achieved by just choosing the prize optimally and not
disclosing information. This is because the size of the prize affects the levels of effort
invested in the contest, whereas information disclosure also affects the direction of
effort—the relative allocation of effort across different technologies. Hence the latter can
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yield effort allocations that the former cannot necessarily achieve. We find that, when
optimizing over both information disclosure and prizes, the optimal solution entails a
smaller prize and more information disclosure. In other words, information and prizes
are substitutes: the principal may be better off by offering a smaller prize and optimally
revealing information instead of offering a larger prize and not revealing information.

Our results apply to a number of problems in innovation, procurement, and organi-
zations, where technological uncertainty is important. The model sheds light on the
information design aspect of online platforms like Kaggle, DrivenData, and crowdAI,
among others, which offer firms the possibility to sponsor contests to outsource their
data science needs. In these contests, when contestants choose among multiple tech-
nologies to develop their algorithms (e.g. machine learning, regression methods, or
other prediction algorithms), they do not know which method will turn out to be the
best. However, contestants can infer the performance of different alternatives by testing
them on a dataset provided by the principal, who chooses how much data to disclose.2

This was also the case in Netflix’s recommendation competition in 2009, where Net-
flix publicly revealed a subset of all its available data on users’ preferences to allow
contestants to evaluate the potential of different prediction algorithms. From Netflix’s
perspective there is an option value to procuring a number of different algorithms be-
cause it is uncertain which one will be the most valuable in the long run.3 Thus an
important contest design question is how much data to reveal in the contest. Revealing
more allows contestants to choose a method that performs well in the current data, but
it may also induce too little diversification, i.e. too little effort across methods that do
not work well but could turn out to be the best method ex post.

Related Literature. Our paper contributes to the recent literature on diversification
in contests. Letina and Schmutzler (2017) characterize the optimal prize structure
when the designer wants to induce a variety of approaches. Our paper offers a new
model of variety, and our results are complementary to theirs in that we focus on the
problem of information design, which can also be used to induce variety, rather than
on the optimal prize structure. Terwiesch and Xu (2008) incorporate diversity into the
preferences of the contest designer and show that more participants may be preferred.

2In these contests, the contest designer partitions the available data into a “test dataset” and an
“evaluation dataset.” The test dataset allows participants to learn how their algorithms perform, but
the final prize allocation is based on the performance of the algorithm over the evaluation dataset.

3In addition to whichever algorithm performs best given their current data, the best algorithms will
be determined once Netflix has more data on users’ preferences.
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Boudreau et al. (2011) empirically test the effect of the number of participants on
diversity. Letina (2016) studies the effect of market competition and mergers on variety
and finds conditions such that the research portfolio under market competition features
too much (or too little) variety. Toh and Kim (2013) study how aggregate uncertainty
affects technological diversification within a firm. They find that a firm’s technology
becomes more specialized under greater uncertainty. Related to this, Krishnan and
Bhattacharya (2002) study how a firm should design a product when there are several
uncertain alternatives for the product’s underlying technology.

Because we focus on information design, our paper also contributes to the literature
on disclosure and feedback in contests. The existing literature focuses on information
regarding the agents’ characteristics or actions rather than information about the un-
derlying technologies, which we focus on in our paper. For instance, Aoyagi (2010)
studies a dynamic tournament and compares the effort provision by agents under full
disclosure of their performance (i.e., players observe their relative position) and no in-
formation disclosure. Ederer (2010) adds private information to this setting, and Klein
and Schmutzler (2016) add other decisions regarding the allocation of prizes and alter-
native performance evaluations. Fu et al. (2016) and Xin and Lu (2016) study optimal
information disclosure regarding agents’ entry decisions in contests. Zhang and Zhou
(2016) study information disclosure regarding one player’s effort costs, whereas Mihm
and Schlapp (2018) study the optimal information disclosure to maximize the provision
of effort when players are uncertain about the principal’s preferences. Kovenock et al.
(2015) study the effect of players sharing information throughout the contest. Feedback
in dynamic contests has been recently studied by Bimpikis et al. (2014) and Benkert
and Letina (2016). Recent empirical work assessing the effect of performance feedback
on competition outcomes includes Gross (2015, 2017), Huang et al. (2014), Kireyev
(2016), Bockstedt et al. (2016), and Lemus and Marshall (2017).

This paper also relates to R&D models with multiple risky technologies. Dasgupta and
Maskin (1987) show that, in a winner-takes-all competition, the equilibrium allocation
of research on correlated projects is too high relative to the socially efficient allocation,
so there is less diversification in equilibrium. Bhattacharya and Mookherjee (1986)
present a similar framework, but they study the level of risk taken by the firms, finding
that the optimal research strategy may feature excessive or insufficient risk taking,
depending on the level of risk aversion and the shape of the distribution of research
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outcomes. Cabral (1994) shows that, when the competition is not winner-takes-all,
the level of risk taking is lower than the socially optimal level. Cabral (2003) explores
the same question in a dynamic environment, showing that a follower firm takes more
risk than the leader. Our paper contributes to the literature by studying information
disclosure by the contest designer in the framework of Kamenica and Gentzkow (2011).

A recent literature has explored information design in games more generally. This work
includes Mathevet et al. (2017), Laclau and Renou (2016), Alonso and Câmara (2016),
and Ederer et al. (2018), among others, as well as models of contests for experimenta-
tion, such as Halac et al. (2017).

Our paper focuses on a single element of contest design, information disclosure, which
relates broadly to the literature of contest design, where the goal is to study the effect
of alternative designs on players’ incentives. This literature includes the work of Taylor
(1995) and Fullerton and McAfee (1999) on restricting the number of competitors in
winner-takes-all tournaments, Moldovanu and Sela (2001) on the optimal number of
prizes, and Che and Gale (2003) on both number of prizes and the number of partici-
pants.

2 Model

A principal organizes a contest to solve a problem. The contest awards a prize, V ,
to the best solution to the problem. There are M agents, indexed by i ∈ {1, ...,M},
who compete in the contest. There are N different methods or technological approaches
(henceforth, “technologies”), indexed by t ∈ {1, ..., N}, that the agents can use to tackle
the problem that needs to be solved in the contest.

It is common knowledge that only one of these technologies is appropriate to solve the
problem, but it is uncertain ex ante which technology that is: we call this technology the
“best” one ex post. The agents and principal hold a common prior, Θ = (θ1, ..., θN) ∈
∆N , where

∆N ≡ {(θ1, ..., θN) : θt ∈ [0, 1],
N∑
t=1

θt = 1}

and θt is the common prior belief that technology t is the best one, with t = 1, ..., N .
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Agents choose how much effort to invest into each technology. We model competition
within each technology as a standard Tullock contest (see, e.g., Pérez-Castrillo and
Verdier, 1992). Conditional on technology t ∈ {1, ..., N} being the best one ex post,
the prize is awarded among all agents who exerted effort in that technology. Agent i
wins the contest for technology t with probability

pi(xi,t, x−i,t) = xi,t∑M
j=1 xj,t

,

where xi,t is agent i’s effort in technology t and x−i,t is the profile of efforts that agent
i’s rivals exert on technology t.4

The principal’s payoff depends on the total effort, xt = ∑M
i=1 xi,t, exerted by agents on

the ex post best technology, t. Specifically, the principal’s payoff is

v(x) =
N∑
t=1

f(xt) · 1[t is the best technology],

where f(·) is a strictly increasing and concave production function and 1(·) is the
indicator function. Note that the principal derives no benefit from the effort exerted on
technologies other than the best one. More effort on the best technology increases the
principal’s payoff, but there are decreasing marginal returns. The function f(·) can also
be interpreted as a reduced-form representation of a model where agents’ efforts lead
them to draw a stochastic number of i.i.d. draws out of some output distribution—
hence investing more effort implies that the first order statistic increases in expectation
as a function of effort, with decreasing marginal returns.

For any possible belief Θ = (θ1, ..., θN) ∈ ∆N , where θt = Pr(t is the best technology),
and any aggregate effort profile (x1, ..., xN), the principal’s expected payoff is

Eθ[v(x)] =
N∑
t=1

θtf(xt). (1)

Note that, whenever there is residual uncertainty, i.e. θt < 1 for all t = 1, ..., N , the
concavity of f(·) means that the principal values diversification among the technologies.

Modeling Assumptions. In our model, the principal is risk neutral over output
4We make the standard assumption in the contest literature: pi(0, ..., 0) = 1/N .
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profiles, (f(x1), ..., f(xN)). However, when we consider expected payoffs over the profile
of total efforts on each technology, (x1, ..., xN), the principal’s preferences over such
profiles are risk averse due to the concavity of f(·). The latter interpretation—with risk
aversion over effort profiles—will turn out to be insightful for our results, because the
Arrow-Pratt coefficient of relative risk aversion associated with f(·) plays an important
role in our findings. Hence we will refer to the principal as being risk averse throughout
the paper, and we will treat the principal’s payoffs as defined over effort profiles rather
than over the outputs that they correspond to.

In our model agents compete in a contest with a simple prize structure: a single prize
of size V . This prize structure is commonly used in practice and is optimal in many
contest settings (see e.g. Clark and Riis (1998)). Later in the analysis, we will also
study the optimal size of the prize in conjunction with optimal information disclosure.
Furthermore, we model the prize as technology-neutral. In practice it may be difficult
to contract over technology-specific prizes. In fact virtually no contest in practice uses
technology-contingent prizes. In theory one could imagine a contest where the prize
depends on which technology the winner uses. This is weakly better than a single
prize, but the analysis of this case is less tractable. We study this as an extension in
the Appendix and show that there are still gains from information design. For the sake
of tractability, our baseline model uses a prize that is technology-neutral.

Finally, we model public rather than private information disclosure for two reasons.
First, information disclosure is typically public in many of the applications of our
model—in prediction contests the principal reveals the same dataset to all contestants,
who then use the data to form beliefs over the value of different approaches and to de-
velop their prediction algorithms; in procurement contests the principal uses the same
procurement tender to solicit proposals from the contestants. Second, disclosing infor-
mation privately would entail differential treatment of contest participants, which could
raise fairness and corruption concerns in some settings, such as procurement.

2.1 Preliminary Analysis

Consider agent i’s problem of choosing how much effort to exert on technology t. Given
the common belief Θ = (θ1, ..., θN) and the aggregate effort that agent i’s rivals exert
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on technology t, agent i’s optimal effort solves the following problem:

max
xi,t≥0

N∑
t=1

V · θt · pi(xi,t, x−i,t)− xi,t,

Agent i receives the prize, V , if and only if: (1) technology t is the best approach—
under the agent’s belief, this event happens with probability θt—and (2) agent i wins
the contest for technology t, which happens with probability pi(xi,t, x−i,t).

In the first-best allocation of effort—if the principal could control the agent’s efforts—
the amount of effort on technology t is found by solving:

max
yt≥0

N∑
t=1

θtf(yt)− yt.

Proposition 1. We have:

1. In the contest’s unique equilibrium, agent i’s effort on technology t is

x∗i,t = θt

(
M − 1
M2

)
V.

2. The aggregate equilibrium effort on technology t is

x∗t ≡
M∑
i=1

x∗i,t = θtΩ, where Ω =
(
M − 1
M

)
V. (2)

3. The first-best allocation of effort on technology t is

y∗t = (f ′)−1
( 1
θt

)
· 1(θtf ′(0) > 1).

From Proposition 1, the principal’s expected payoff from holding a contest in which
agents compete under belief (θ1, ..., θN) is

Eθ[v(x∗)] =
N∑
t=1

θtf(x∗t )− V =
N∑
t=1

θtf(θtΩ)− V. (3)

Note that this function is non-linear in θ.5
5When posterior beliefs are distributed according to some distribution G, this non-linearity implies
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The agents’ and the principal’s incentives are generally misaligned. Therefore, the
equilibrium and first-best allocations differ in both the level of effort and the relative
allocation of effort across technologies. The proportion of total effort allocated towards
technology t in equilibrium is

x∗t∑N
t=1 x

∗
t

= θt,

and it is generically different than the proportion of effort allocated towards technology
t in the first-best, which is

y∗t∑N
t=1 y

∗
t

=
(f ′)−1

(
1
θt

)
∑N
t=1(f ′)−1

(
1
θt

) .
Figure 1 illustrates the proportion of total effort allocated towards technology 1 with
two technologies (N = 2). Figure 1 (left panel) shows that, when f(x) =

√
x, agents

under-react to their beliefs regarding the technologies relative to the first-best: when
θ > 0.5, the proportion of effort allocated in equilibrium towards technology 1 (dashed
line) is lower relative to the first best (solid line). Analogously, when θ < 0.5, the
proportion of effort allocated to technology 1 in equilibrium (dashed line) is larger
relative to the first best (solid line). Therefore, in equilibrium the proportion of effort
allocated towards the most promising technology is lower than the first-best proportion.

Figure 1 (right panel) considers f(x) = 1 − exp(−8x) and shows that, in this case,
agents can both over-react and under-react to their beliefs regarding the technologies,
depending on the range of beliefs considered. When the belief is around 0.5, agents over-
react to beliefs, in contrast to the left panel of the figure. In particular, when θ > 0.5
(respectively, θ < 0.5) and not too far from 0.5, the proportion of effort allocated in
equilibrium towards technology 1 is larger (respectively, lower) relative to the first best.
Hence the equilibrium proportion of effort allocated to the more promising technology
is too large relative to first-best when the beliefs are not too extreme, i.e. close enough
to 0.5. On the other hand, when beliefs are far enough from 0.5, agents in equilibrium
under-react to their beliefs regarding the technologies relative to the first best allocation,
as in the left panel of the figure.

that we cannot write the principal’s expected payoff as a function of posterior means (or more generally
as a function of one of G’s moments). This is in contrast to much of the Bayesian persuasion literature,
which has studied special settings where the principal’s payoff ultimately only depends on expected
posteriors—see e.g. Kolotilin (2018); Hwang et al. (2019).
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Figure 1: Comparison of the proportion of effort allocated towards technology 1 as a function
of the belief θ. In the left panel, the principal’s preference is f(x) =

√
x, whereas in the right

panel it is f(x) = 1− exp(−8x).

The over- and under-reaction illustrated in Figure 1 can be counteracted through infor-
mation design. In the next section, we explore if and when the principal can increase
her payoff by disclosing some information about the merits of each technology through
the results of an experiment. Such an experiment creates useful information: it can
improve the allocation of efforts across the technologies. On the other hand, if agents
over-react to such information, there may be too little diversification from the princi-
pal’s perspective. Thus the principal may prefer to disclose less information, potentially
inducing more misallocation of effort in equilibrium in exchange for more diversification.

2.2 Information Design

We now turn to the analysis of optimal information disclosure. In general, the principal
may be able design an experiment that reveals information to the agents regarding the
feasibility or likelihood of success of the different technologies. Importantly, it may be
impossible for the principal to design perfectly revealing experiments: if it was possible,
the principal would always choose a perfectly revealing experiment. One important
feature of our analysis is that, even after the result of an experiment is publicly revealed,
there may be some residual uncertainty. For example, in prediction contests there is
usually a public “test dataset” that reveals the performance of different algorithms.
However, there is residual uncertainty: the “best” algorithm, which determines the
winner of the contest, is decided by evaluating the performance of the algorithms using
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a different dataset.6 In that sense, the test dataset is a public signal that agents can
use to update their beliefs before choosing which algorithm to submit to the contest.
In such settings with residual uncertainty, we ask a number of questions: can the
contest designer use information disclosure to improve the equilibrium allocation of
agents across technologies? Should the principal release information? Would a more
risk-averse principal reveal more or less information? How does competition impact the
extent of information disclosure? What is the optimal size of the prize if information
disclosure is taken into account?

We assume that the designer can commit to reveal the result of a public experiment to
the agents, informing them about the feasibility or value of the different technologies.
We focus on public information disclosure rather than private disclosure because, in
practice this is the case in the applications we discuss in the introduction: in prediction
contests, for example, all contestants have access to the same test data, which means
that they can, in principle, generate the same beliefs regarding the performance of
different algorithms. After observing the information revealed in this experiment, each
agent chooses how much effort to invest in the technologies. Once each agent has made
their choice, the contest resolves all remaining uncertainty and prizes are allocated.

Information structures. The principal designs an experiment that reveals public
information about the technologies to all agents. An experiment is a signal structure
s = (M, G̃(·|t)), where M is a set of messages and G̃(m|t) is the probability that
message m ∈M is sent when the state of nature is t, i.e., when technology t is the best
choice ex post. Let S be the set of all such signal structures available to the principal.
Importantly, we do not assume that the principal has access to every signal structure.
This is motivated by the observation that, in many practical applications, a perfectly
informative signal is impossible to generate: in many applications it is unfeasible to
design an experiment that eliminates all the uncertainty. Additionally, the problem is
trivial if a perfectly informative signal exists: the principal reveals to the agents which
technology is the best one, and all agents work on this technology. Instead, we solve
for the optimal information disclosure policy for any arbitrary set of available signals.
The set S allows for discrete or continuous posteriors, and it allows for both partitional
or noisy signal structures.

6In many instances of prediction contests, the best solution is one that gives the best out-of-sample
predictions. Thus, to determine the winner, each algorithm could be evaluated on datasets that do
not even exist when agents choose which technology to use.
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Each signal structure, s ∈ S, induces some distribution over posterior beliefs on the
technologies, Gs(Θ), and we denote the set of posterior beliefs in the support of that
signal as Ps, with generic elements Θ ∈ Ps. Let PS ≡ ∪s∈SPs denote the set of all
posterior beliefs that can be induced by some signal that is available to the principal.

Lemma 1. For any set of signal structures S, the set of posteriors that can be induced
by the principal, PS = ∪s∈SPs, is convex.

Intuitively, for any two posterior beliefs θ̃, θ̃′ ∈ PS that can be induced with some
signal structures, s′ and s′′, the principal can also induce any belief that is a convex
combination of the two posteriors, αθ̃ + (1 − α)θ̃′. This can be achieved using an
appropriate mix between the signal structures, s′ and s′′. Therefore, the set of feasible
posteriors is a convex subset of the N − 1 simplex. In particular, when there are only
two technologies, the set of feasible posteriors is an interval.

The following example illustrates how a standard and simple signal structure translates
into a set of feasible posteriors and how the latter can be derived from a given prior
and a set of available signal structures.

Example 1. There are two technologies. The state of the world, t ∈ {1, 2}, describes
which of the two technologies is the best. Let the most informative experiment that the
principal can design be one that sends signal s ∈ {1, 2} according to Pr(s = t|t) = α,
with α ∈ (0.5, 1). For a prior θ ∈ [0, 1], the posterior beliefs conditional on signal s are:

Pr(t = 1|s = 1) = αθ

αθ + (1− α)(1− θ) and Pr(t = 1|s = 2) = (1− α)θ
(1− α)θ + α(1− θ) . (4)

Equation 4 generates two extreme posteriors for each prior: the boundary of PS. The
entire set of feasible posteriors, PS, is convex, and is obtained by appropriately mixing
the principal’s most informative signal with an uninformative signal (see Lemma 1).

Figure 2 illustrates the range of feasible posterior beliefs for three values of α. In
each panel, the x-axis corresponds to the prior belief, and the y-axis corresponds to
the posteriors generated by the experiment defined in Equation 4. In all panels, the
vertical line corresponds to the range of feasible posteriors for the prior belief θ = 0.4.
With a less informative signal (e.g. α = 0.55, Figure 2, left panel), the posteriors
are very close to the prior, resulting in a set of feasible posteriors PS that is narrow
and concentrated around the prior. With more informative signals (e.g. α = 0.75,
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Figure 2: All panels show the range of posteriors for a prior of θ = 0.4. Left panel: α = 0.55,
posterior in [0.353, 0.449]. Middle panel: α = 0.75, posterior in [0.182, 0.667]. Right panel:
α = 0.95, posterior in [0.069, 0.857].

Figure 2, middle panel), the set of feasible beliefs expands around the prior. As the
signal becomes perfectly informative (e.g. α = 0.95, Figure 2, right panel), the set of
attainable posteriors expands even further.

Different experiment technologies map into different sets of posteriors. In our analysis,
we take the common prior, Θ, and the set of feasible posteriors, PS, as the primitives
of our model. Any signal structure can be translated into this framework. Our results
then characterize the optimal information disclosure policy for any arbitrary primitives.
In this sense our approach is more general than the standard Bayesian persuasion model
because we allow for the principal to have access to an arbitrary set of signal structures,
including ones that cannot perfectly resolve all uncertainty in the environment.

Optimal Information Design. The value of information disclosure can be analyzed
in terms of the posterior beliefs that a signal structure induces for the agents and the
principal. Recall that, when agents hold the belief Θ, in equilibrium we have x∗t = θtΩ.
Therefore, the principal’s expected payoff from inducing the posterior Θ is

ν(Θ) ≡
∑
t

θtf(θtΩ). (5)

As in Kamenica and Gentzkow (2011), the value of information disclosure is described
by the convexity of ν(Θ). Let ν̂(Θ,PS) be the concave closure of ν(Θ) over PS. The
principal strictly benefits from persuasion whenever ν̂(Θ,PS) > ν(Θ). Next, we char-
acterize whether ν(·) is concave or convex.
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Lemma 2. ν(Θ) is concave at Θ = (θ1, ..., θN) ∈ ∆N if and only if

Ωθtf ′(θtΩ)[2− rf (θtΩ)] + ΩθNf ′(θNΩ)[2− rf (θNΩ)] < 0, for all t = 1, ..., N − 1, (6)

where rf (x) ≡ −xf
′′(x)

f ′(x) is the relative risk aversion coefficient associated with f(·).

The necessary and sufficient condition for ν(·) to be locally concave at Θ in Lemma 2
depends on the Arrow-Pratt relative risk aversion coefficient associated with f(·). For
instance, when rf (Ω) > 2, the principal does not benefit from information disclosure;
when rf (Ω) < 2, the principal always benefits from information disclosure.

We illustrate the relationship between the value of information disclosure and the con-
cavity of f(·) for the case of two technologies. Figure 3 (left panel) shows ν(·) when
f(x) = x0.5. When f(x) = xa for any a ∈ (0, 1), we have rf (x) = 1 − a < 2 for
any x. According to Lemma 2, ν(·) is globally convex, so there are always gains from
information disclosure for any prior and for any PS. Furthermore, the principal designs
an experiment that generates the most extreme possible posteriors in PS: for any prior
belief, agents receive (with some probability) the most favorable signal for one of the
technologies. These posterior beliefs induce more agents to allocate effort towards the
most promising technologies relative to the allocation based on the prior belief. In other
words, this signal structure will induce agents to focus on one technology in equilibrium,
reducing diversification of effort across technologies.

When f(x) = 1 − e−λx, we have rf (x) = λx, and Lemma 2 shows that, depending on
λ, ν(·) might not be globally convex. Figure 3 (right panel) shows ν(·) when f(x) =
1 − exp(−8x); ν is locally concave near θ = 0.5 and convex towards the extremes.
Hence for some beliefs and for some set of posteriors, full information revelation is not
optimal, resulting in less focus, as the agents’ posteriors would not be as extreme as
under full information revelation.
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Figure 3: Function ν(θ), the value for the principal of inducing posterior θ, for different
functions f(·). Left Panel: f(x) =

√
x; Right Panel: f(x) = 1− exp(−8x).

Why would the principal want to use a more or less informative signal structure? First
consider the case of f(x) =

√
x. Figure 1 (left panel) shows that too little effort

is allocated towards the most promising technology in proportional terms compared
to the first-best effort allocation. This implies that in equilibrium there is too much
diversification, so the principal’s optimal information disclosure policy always induces
the most extreme posterior possible, which reduces the diversification and induces more
focus in equilibrium.

Second, consider the case with f(x) = 1− e−8x. Figure 1 (right panel) shows that, for
priors around 0.5, too much effort is allocated towards the most promising technology
in proportional terms compared to the first-best effort allocation, so there is too little
diversification in equilibrium. As we will show, the principal in this case may not
disclose any information, either because the signals available are not too informative
(i.e. it is not possible to generate posteriors far enough from the prior) or because
generating extreme posteriors induces even less diversification. On the other hand, if
the priors heavily favor one of the technologies, competition pushes agents to allocate
relatively more effort towards the less promising technology and there is too much
diversification in equilibrium. To induce more focus, the principal designs an experiment
that generates more extreme posteriors.

We formally show that the gain from information disclosure (i.e. whether ν(·) is locally
convex or concave) depends on the value the principal assigns to diversification. When
rf (·) is relatively large, i.e. f(·) is very concave, diversification is more valuable to the
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principal than to the agents. This is because the equilibrium allocation for any belief
Θ is too responsive to differences among the technologies relative to the principal’s
first-best allocation of effort across technologies. In this case, agents over-react to
differences among the technologies. In contrast, when rf (·) is relatively small, i.e. f(·)
is relatively less concave, then the value of diversification to the principal is smaller so
revealing information that induces more extreme beliefs is more valuable and produces
an allocation closer to the first-best. Therefore, the principal may prefer to reveal
information that induces more extreme beliefs.

The next lemma shows that the shape of ν(·) with N > 2 technologies is analogous to
the two cases shown in Figure 3.

Proposition 2. The function ν(Θ) has the following properties:

(i) All of its global maxima are at the vertices of the N − 1 simplex;

(ii) The center of the simplex, Θ = (1/N, ...1/N) is a local maximum if and only if

2 < rf

(
Ω
N

)

(iii) If there exists a local maximum, it must be Θ = (1/N, ...1/N).

Proposition 2 shows that for any concave function f(·), the function ν(·) is either
strictly convex or it has a unique local maximum at the center of the simplex. This, in
particular, implies that all of the qualitatively different classes of cases for the shape of
ν(·) when there are two technologies are illustrated in Figure 3. Whether ν(·) is locally
concave at the center of the simplex depends on rf

(
Ω
N

)
, the coefficient of relative risk

aversion associated with f , evaluated at Ω
N
. In particular, if rf

(
Ω
N

)
< 2, then ν(·)

is convex and the solution is obvious: the principal always uses the most informative
experiment, disclosing as much information as possible. If rf

(
Ω
N

)
> 2, then ν(·) is

locally concave at the center of the simplex and the principals’ information design
problem, which we analyze next, is more involved.

Additionally, Proposition 2 shows that ν(·) has global maxima with value f(Ω) at the
extreme points of the simplex because at those extreme points the principal and agents
know with certainty which technology is the best choice. Thus every agent works on
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that technology in equilibrium, which is the optimal allocation for the principal. This
immediately implies that, if the principal has access to a perfectly informative signal,
revealing that signal is optimal. However, such a signal need not be available to the
principal in general—in many settings it is unrealistic to assume that the principal has
a perfect signal that can eliminate all uncertainty in the environment. In the Netflix
Prize, for example, to implement such a signal Netflix would need to have infinite
amounts of data on consumers’ preferences.

Characterization of the Optimal Information Design. We now characterize the
optimal signal structure in our setting. Let Θ0 be the common prior belief profile
over the N technologies. Conditional on that prior belief, there exists a convex set of
posteriors PS(Θ0) ⊆ ∆N that the principal can induce that are consistent with Bayes’
rule (for an example, see Example 1). In particular, we always have that Θ0 ∈ PS(Θ0)
because the principal can always decide not to reveal anything, so the posterior equals
the prior. For the sake of notation, we denote PS(Θ0) simply by PS, and we denote by
∂PS the boundary of PS.

Let ΘC ≡ {Θ ∈ ∆N : ν̂(Θ,PS) = ν(Θ)} be the set of all posteriors Θ ∈ ∆N where
the value function, ν, agrees with its concave closure, ν̂, over PS. Let ṽ ≡ sup{ν(Θ) :
ν ′′(Θ) ≤ 0, Θ ∈ PS} be the largest value of the value function over the region of PS
where it is concave.7 We can now characterize the optimal disclosure policy.

Proposition 3. The optimal disclosure policy, s∗, is

1. maximally informative if ν(θ) ≥ ṽ for all θ ∈ ∂PS; then s∗ induces a distri-
bution over posterior beliefs with support consisting only of points in the boundary
of the feasible set of posteriors, with distribution Gs s.t. EGs [Θ] = Θ0.

2. partially informative if ν(θ) < ṽ for some θ ∈ ∂PS and PS 6⊆ ΘC; then s∗

induces a distribution with support consisting of boundary points in ∂PS or in
PS ∩ΘC, with distribution Gs s.t. EGs [Θ] = Θ0.

3. uninformative if PS ⊆ ΘC; then s∗ induces the prior Θ = Θ0.

The optimal signal structure is characterized with 3 different cases. These cases de-
pend on three key features of the environment: (i) the value of diversification for the

7If this region is empty, ṽ = −∞.
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principal; (ii) how informative the principal’s signals are for a given prior; and (iii) the
extent of technological uncertainty. We illustrate the intuition for each of these features
in the case of two technologies. First, if ν is globally convex, then the optimal signal
structure is always maximally informative and the optimal persuasion experiment re-
veals results that lead to extreme posterior beliefs. On the other hand, in the case
where the principal is sufficiently risk averse, i.e., when ν is not convex (see Figure 3),
the optimal information design problem is more subtle, so we focus on this case in the
example below.

Illustrative Example. Consider the case of two technologies and an arbitrary set
of posteriors PS = (θ1, θ1). For the sake of this example, we assume symmetry, so
0 ≤ θ1 ≤ θ1 = 1 − θ1 ≤ 1, although this is not required for our results. We take
the common prior, θ0, and set of feasible posteriors, PS, as primitives of the model
and illustrate the optimal information policy in Proposition 3 for different priors and
feasible posteriors. Note that, for any prior and any set of feasible posteriors, there
is implicitly some signaling technology that generates the latter from the former with
Bayesian updating of the beliefs after the realization of signals. When we compare the
optimal policy with various priors and different sets of feasible posteriors, the implicit
signaling technology itself is also changing to keep the priors and posteriors Bayes-
consistent. Our goal here is to illustrate how different priors and feasible posteriors
give rise to different optimal policies.

Figure 4 shows the principal’s payoff with/without information disclosure in three
different scenarios when f(x) = 1 − exp(−λx) with λ = 8 and Ω = 0.9. In each
panel, the black solid line represents the principal’s payoff without disclosure—ν(θ1) ≡
ν(θ1, 1 − θ1)—and the red dashed line represents the concavification of the principal’s
payoff over the region of feasible posteriors—ν̂(·) over PS. Each panel highlights three
features: (1) the inflection points of ν(·), denoted by C and D, at θ1 = 0.2627 and
θ1 = 0.7373, respectively; (2) the unique interior maximum of ν(·) inside the region of
feasible posteriors, which in each case corresponds to θ1 = 1

2 ; and (3) the points B and
E, where the value of ν(·) equals its value at the interior local maximum. The function
ν is concave in the region between C and D and convex otherwise. In each case, we
have that ṽ = sup{ν(θ) : ν ′′(θ) < 0, θ ∈ PS} = f

(
1
2

)
= 1 − exp(−λ/2), and we have

some point θ̂1 such that θ̂1 = sup{θ : ν̂(θ, [θ1, θ1]) = ν(θ)}.
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Figure 4: The solid black line corresponds to the principal’s payoff without disclosure with
f(x) = 1 − exp(−λx), λ = 8, and Ω = 0.9. The dashed red line corresponds to the function
ν̂(·) = concavification(ν) over the region of feasible posteriors PS . Each panel shows a different
scenario for the set of feasible posteriors PS = [θ1, θ1] and the prior is θ0.
Left Panel: θ1 = 0.02 and θ1 = 0.98. Prior θ0 = 0.5.
Middle Panel: θ1 = 0.1 and θ1 = 0.9. Prior θ0 = 0.8.
Right Panel:θ1 = 0.3 and θ1 = 0.7. Prior θ0 = 0.5.

The principal’s optimal signal structure depends on the a priori asymmetry of the
technologies (i.e. the prior Θ0), the quality or informativeness of the feasible signals
the principal can use for a given prior (i.e., PS(Θ0)), and the value of diversification to
the principal (i.e. ṽ).

First, if the principal can generate highly informative signals, then PS includes posterior
beliefs close enough to 0 and 1. When min{ν(θ1), ν(θ1)} > ṽ, a maximally-informative
disclosure is optimal. Graphically, in Figure 4 (left panel), θ1 lies somewhere between
points A and B, and θ1 lies somewhere between points E and F. In this case, the concave
closure of ν(·) is the line that connects ν(θ1) and ν(θ1). The optimal signal is one that
reveals θ1 with some probability q and θ1 with the remaining probability 1− q, where q
is such that the expected posterior is equal to the prior, θ0. The reason is that, when the
value of diversification to the principal is low (i.e. the rf (x) coefficient is low enough),
revealing information to the agents increases the principal’s expected value because,
in equilibrium, agents under-react to asymmetries in the technologies when beliefs are
extreme. Thus, the principal benefits from inducing extreme posteriors. This leads to
an optimal disclosure rule that mixes between the two most extreme posteriors possible
within PS.

Second, suppose the available signals are not as informative and the set of feasible
posteriors, PS, is narrow enough so that ν(θ1) < ṽ and ν(θ1) < ṽ. Moreover, suppose
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that the technologies are ex-ante asymmetric, with technology 1 more likely to be
successful ex ante and θ0 to the right of point D. Graphically, in Figure 4 (middle
panel), θ1 lies somewhere between points B and C, and θ1 lies somewhere between
points D and E. This requires a large enough value of diversification so that ṽ is large.
In this case, the optimal signal is partially informative: it reveals the posterior θ̂1 with
some probability q and θ1 with the remaining probability 1 − q, where q is such that
the expected posterior is equal to the prior.

Third, suppose the set S only contains less informative signals, so the principal can
induce beliefs in PS only around 0.5 in the region where ν(·) is concave. Graphically, in
Figure 4 (right panel), θ1 and θ1 lie somewhere between points C and D. In this case the
concave closure of ν(θ1) over PS is equal to ν(θ1)—there is no value from information
disclosure, and the optimal signal is perfectly uninformative, inducing a posterior equal
to the prior. The principal is constrained by the set of signals she can use to persuade
the agents, which are relatively uninformative signals. The value of diversification is
large enough, and the technologies are symmetric enough that revealing information
would lead to more extreme posteriors, which agents would over-react to in equilibrium
compared to the first-best.

2.3 Degree of Information Disclosure: Size of the Prize and
Number of Competitors

We now study how the size of the prize and the number of competitors affect the
optimal information disclosure policy. Both the size of the prize, V , and the number
of competitors, M , impact ν(·) only indirectly through Ω =

(
M−1
M

)
V . Thus, to study

the effects of V and M , it is enough to examine the comparative statics on Ω.

Define the degree of information disclosure to be the type of information policy that is
optimal for the principal. From Proposition 3: for any given prior Θ0 and any given set
of attainable posteriors PS(Θ0), we have no disclosure, partial disclosure, or maximal
disclosure, depending on the parameters of the contest, including the size of the prize
and the number of competing agents.

If the region of beliefs over which the principal’s value function ν is concave, denoted
by ΘC , expands in terms of set inclusion, then the degree of information disclosure
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weakly decreases, i.e. it decreases whenever the optimal policy switches from maximal
or partial disclosure towards partial or no disclosure. We characterize the effect of V
and M on the degree of information disclosure by examining their effect on ΘC .

To simplify the exposition, we focus on the case of two technologies, so Θ = (θ, 1− θ).
From Lemma 2, the condition for concavity of ν at Ω when N = 2 is equivalent to
g(Ω, θ) < 0, where

g(Ω, θ) ≡ h(Ωθ) + h(Ω(1− θ))

and h(x) = xf ′(x)[2−rf (x)]. If θ∗ ∈ [0, 0.5] is an inflection point of ν(·), then g(Ω, θ∗) =
0. Thus, for each Ω, the inflection point of ν(·) in [0, 0.5] is the solution to the implicit
equation

g(Ω, θ∗(Ω)) = 0. (7)

Lemma 3. The solution to equation (7), θ∗ ≡ θ∗(Ω), is decreasing in Ω if and only if

h′(Ω(1− θ∗))
h′(Ωθ∗)− h′(Ω(1− θ∗)) + θ∗ > 0 (8)

A sufficient condition for inequality (8) to hold is that h is increasing and concave.

Directly from this lemma we can describe how the size of the prize and the number of
contestants affect the optimal degree of information disclosure in the contest.

Proposition 4. The optimal degree of information disclosure weakly decreases when
the number of competitors increases or when the size of the prize increases, if and only
if inequality (8) holds.

Increasing the number of competing agents or increasing the size of the prize increases
the total level of effort in each technology. Because f(·) is concave, the marginal return
to effort diminishes, so the value of focus becomes less important to the principal
compared to the value of diversification. Hence the objective becomes more concave
around the center of the simplex. For any given prior Θ0 and set of attainable posteriors
PS, as the region of concavity expands, the concavification of the objective function
changes according to each case of Proposition 3. Therefore, the optimal information
disclosure policy weakly changes from more disclosure (maximal or partial disclosure)
to less disclosure (partial or no disclosure).
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To illustrate Proposition 4, we consider f(x) = 1 − exp−8x, for which inequality (8)
holds. This means that as Ω increases the region of concavity of ν increases. Figure 5
shows how the function ν(·) changes for prizes of different sizes, V = 0.6, 0.8, 1, with
f(x) = 1− exp−8x and M = 5 competitors. The function becomes concave around the
center and the concave region expands as the prize or the number of agents (and hence
Ω) increases: ν is convex when V = 0.6, but it is locally concave for V = 0.8 or V = 1,
and the region of concavity expands.

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

Figure 5: Function ν when f(x) = 1 − e−8x for different values of the prize V = 0.6 (solid
line), V = 0.8 (dashed line), V = 1 (dotted line). The function ν is convex when V = 0.6;
it is concave in the region [0.2979, 0.7021] when V = 0.8; and it is concave in the region
[0.2570, 0.7430] when V = 1.

Next, suppose that the set of most informative experiments is generated by the speci-
fication in Example 1 with a parameter α = 0.75. In this case, the boundary of the set
of posteriors for each prior is illustrated in Figure 2 (middle panel). For instance, when
the prior is θ = 0.4, the set of attainable posteriors is [0.182, 0.667]. Figure 6 shows both
ν(·) and its concavification, ν̂(·), over the range of feasible posteriors [0.182, 0.667] for
the prior θ = 0.4 under this experiment technology. The optimal information disclosure
policy depends on V : the higher the prize values, the lower the extent of information
disclosure (see Proposition 4). Thus, with lower prize values (e.g. V = 0.6, Figure 6,
left panel), the principal uses maximal disclosure. At higher prize values (e.g. V = 0.8,
Figure 6, middle panel), the principal uses partial disclosure. At even higher prize
values (e.g. V = 1, Figure 6, right panel), the principal does not disclose information.
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Figure 6: Function ν(θ) when f(x) = 1 − e−8x for different values of the prize. The
vertical line indicates the fixed prior 0.4. The set of attainable posteriors with the experiment
technology in Example 1 is [0.182, 0.667].

We can carry out this exercise for any prior belief θ ∈ [0, 1].
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Figure 7: As Ω increases (from left panel to right panel), the extent of information disclosure
decreases. For each prior, the solid (red) line shows the posteriors used in the optimal informa-
tion structure. In the region denoted by “Full,” there is full information disclosure, meaning
that posteriors are the most extreme ones possible. In the region denoted by “Partial,” there
is partial information disclosure, meaning that posteriors are not the most extreme ones. In
the region denoted by “None,” there is no information disclosure, meaning that the posterior
equals the prior.

Figure 7 shows the set of posteriors used in the optimal information disclosure policy,
for each prior. In the left panel of Figure 7, when Ω = 0.6, the function ν is convex
and, conditional on the set of feasible posteriors for each prior, the optimal policy is
maximal information disclosure. In other words, for each prior, the optimal information
structure induces the same posteriors induced by the most informative experiment. In
the middle panel, when Ω = 0.64, there is no information revelation for any prior in
[0.41, 0.59], partial information disclosure for priors in [0.26, 0.41] ∪ [0.59, 0.74] and full
disclosure for priors in [0, 0.26] ∪ [0.74, 1]. In the right panel, when Ω = 0.8, there is
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no information revelation for any prior in [0.35, 0.65], partial information disclosure for
priors in [0.21, 0.35] ∪ [0.65, 0.790] and full disclosure for priors in [0, 0.21] ∪ [0.79, 1].
As the number of competitors increases, the inflection point of ν(·) decreases, meaning
that the extent of information disclosure decreases. In other words, in a contest with
more competitors, the principal may be less willing to disclose information relative to
a contest with the same characteristics but with fewer competitors.

2.4 Optimal Size of the Prize and Information Disclosure

We now examine the interaction between information design and the size of the prize. In
the previous section we provided a condition that establishes when increasing the prize
reduces the extent of information disclosure. Thus, we now ask: For a given prior Θ0

and set of posteriors P(Θ0), what is the optimal combination of prize and information
disclosure? In particular, will the principal disclose information once the prize has been
chosen optimally? Understanding the tradeoff between information disclosure and the
optimal prize will show the principal’s benefit of information disclosure once the prize
is chosen endogenously. In principle, information disclosure could have no value once
the prize is chosen optimally.

For this exercise, we illustrate this tradeoff for f(x) = 1− exp−8x with two technologies
and five competitors, i.e., N = 2 and M = 5. Furthermore, we use the experiment
technology in Example 1 with α = 0.75. Our goal is to jointly optimize over both the
information disclosure policy and the prize, V , for any prior θ and feasible posteriors
PS.

Figure 8 (left panel) plots the principal’s payoff as a function of the prize, V , when the
prior is θ = 0.4 and the set of posteriors is P = [0.182, 0.667]. In the figure, the solid
line corresponds to ν̂(V ; θ)−V , the principal’s expected payoff when the principal uses
the optimal information disclosure, whereas the dashed line corresponds to ν(V ; θ)−V ,
the principal’s expected payoff when she does not disclose information.
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Figure 8: Left Panel: Functions ν̂(θ) and ν(θ), the value for the principal of inducing
posterior θ with and without information disclosure, for f(x) = 1 − e−8x for different values
of the prize V .
Right Panel: The optimal size of V as a function of the prior belief, θ, assuming the principal
uses the optimal information disclosure policy.

Figure 8 (left panel) shows that information disclosure is valuable to the principal as
a design tool, as it increases the principal’s payoff beyond that from a contest with an
optimal prize. In addition, jointly maximizing over the prize and information disclosure
actually results in a different optimal prize. In this example, absent any disclosure the
optimal prize is V = 0.356 and the principal’s expected payoff is 0.3303. In contrast,
with the optimal disclosure policy the optimal prize is V = 0.321, and the principal
obtains an expected payoff of 0.3744. This shows that the optimal information disclosure
policy and the prize interact with each other: By using a combination of optimal
information disclosure and prize, the principal increases her revenue by 13.35 percent
while reducing the size of the prize by 9.83 percent.

Figure 8 (right panel) shows the optimal prize when we repeat the exercise of finding the
optimal prize for any prior θ ∈ [0, 0.5] and set of posteriors from Example 1, i.e., when
the most informative experiment reveals the true technology with probability α = 0.75.
The figure shows that the optimal prize is increasing in the prior, θ1, for θ1 ≤ 0.5.
That is, as the two technologies become more symmetric in terms of their probabilities
of being the best one, the principal’s optimal prize increases. The intuition for this
is clearer from Figure 5 and Figure 6: for priors closer to 0.5, as the prize increases,
the principal’s objective tends to increase more compared to how much it increases for
priors further away from 0.5. Hence the optimal prize, which implicitly also depends
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on the optimal information policy, tends to increase when the technologies are more
symmetric and the prior is closer to 0.5.

3 Conclusion

When there are different approaches to tackle a problem and agents compete in a contest
to find the best solution, we ask whether it is beneficial for the contest sponsor (the
principal) to disclose information regarding the different approaches. We find that it
is not always beneficial to reveal that one technology is more promising than the rest
when the principal cares about diversification: revealing information can induce too
many agents to work on the most promising technology, which reduces diversification.

We present a tractable framework to study contests with technological uncertainty
and to analyze the trade-off between information revelation and diversification. In
our setting, each agent chooses one out of N available technologies to compete in the
contest, and only one of these technologies is the best one ex post. The principal can
commit to reveal to the agents the results of an experiment that signals the success
of each technology. We fully characterize the optimal signal structure that maximizes
the principal’s expected payoff from the contest as a function of the set of all signals
available to the designer. We show that the informativeness of the optimal signal
structure crucially depends on three main features of the environment: (i) the value
of technological diversity; (ii) the quality of the principal’s information; and (iii) the
extent of technological uncertainty. Each of these factors affects the principal’s choice of
information structure, as it affects the key trade-off between diversification and focus.

Revealing more precise information about the technologies induces more extreme poste-
riors, which incentivizes agents to focus on more promising technologies in equilibrium.
However, the equilibrium allocation of agents’ efforts may over-react to such asymme-
tries in their beliefs regarding the different technologies compared to the principal’s
first-best allocation. Because the technologies are uncertain, the principal’s payoff in-
cludes the option value of developing less promising technologies, so diversification is
also valuable and conflicts with the incentive to focus on more promising technolo-
gies. The optimal signal structure balances these considerations and can be maximally
informative, partially informative, or completely uninformative in different cases.
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These results apply to any contest setting where agents can pursue different approaches,
such as in procurement, contests for innovation, promotions within organizations, and
others. All of these settings have in common the feature that the agents and the
principal may be unsure about which technology, idea, or project will be most valuable
or feasible ex post.
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A Appendix: Proofs

Proof of Proposition 1

Proof. Agent i solves:

max
xi,t≥0

N∑
t=1

V θt xi,t
M∑
j=1

xj,t

− xi,t

 .
This problem is separable in t, and so the first-order optimization conditions yield the
following equilibrium level of effort in technology t:

x∗i,t = θt

(
M − 1
M2

)
V. (9)

Thus, the aggregate equilibrium effort on technology t is

x∗t ≡
M∑
i=1

x∗i,t = θtΩ, (10)

where Ω =
(
M−1
M

)
V .

If the principal could control the agent’s efforts, the principal’s would choose the ag-
gregate effort on technology t according to:

max
yt

N∑
t=1

θtf(yt)− yt

which implies that, at an interior solution, θtf ′(y∗t ) = 1 or

y∗t = h(θt) ≡ (f ′)−1
( 1
θt

)
. (11)

Note that y∗t increases with θt because h(·) is increasing (by concavity of f(·)).

For technology t both the equilibrium effort x∗t (θt) and the first-best effort y∗t (θt) only
depend on the belief that technology t is the best one, rather than on the entire profile
of beliefs. The aggregate efforts exerted in different technologies, however, are not
arbitrary because they relate to each other through the condition ∑N

t=1 θt = 1.
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The total level of effort in equilibrium across all technologies is

N∑
t=1

x∗t (θt) = Ω,

which is independent of the agents’ beliefs and only depends on the size of the prize
and the number of agents. In contrast, the aggregate first-best level of effort is

N∑
t=1

y∗t (θt) =
N∑
t=1

h(θt),

which depends on the profile of beliefs over all the technologies. The equilibrium effort
in technology t depends only on θt and Ω, while the first-best level depends on the shape
of the function f and on the belief θt.

Proof of Lemma 1

Proof. The proof follows directly from the analysis in section 2.1.

Proof of Lemma 1

Proof. Consider any two posteriors θ̃, θ̃′ ∈ PS induced by some messages m′ and m′′,
from (possibly different) signal structures s′ and s′′, respectively. For any α ∈ (0, 1), the
posterior αθ̃+(1−α)θ̃′ can be induced with a signal structure s∗ that is an appropriately
chosen a mixture of s′ and s′′. First, define a new message m∗ , and replace m′ and m′′

with m∗ in s′ and s′′, respectively. Thus, if the receiver knows whether a message is
generated by s′ or s′′, their posterior conditional on m∗ would be θ̃ or θ̃′, respectively.
Now define the mixture s∗ so that with probability Pr(s′) = α·Pr(m∗)

Pr(m∗|s′) a message is
generated according to s′, and with corresponding probability Pr(s′′) = (1−α)·Pr(m∗)

Pr(m∗|s′′) a
message is generated according to s′′.

The mixture probabilities Pr(s′) and Pr(s′′) are chosen such that conditional on ob-
serving the message m∗, the receiver believes that with probability α this messages
was generated by s′, and with probability 1− α it was generated by s′′. The receiver’s
posterior is the αθ̃ + (1− α)θ̃′, so the set PS is convex.
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Proof of Lemma 2

Proof. If Θ = (θ1, ..., θN) ∈ ∆N−1 we can write θN = 1 −∑N
t=1 θt. Then, restricted to

the (N − 1)-simplex, ν is a function of N − 1 variables. To show that this function is
concave, let H(Θ) be the N − 1 × N − 1 matrix of second derivatives of ν(Θ). Given
the separability of the function ν(·) the matrix H(Θ) is diagonal. The condition in
the lemma corresponds to imposing that the element in row t is negative, which is a
necessary and sufficient condition for the Hessian to be negative definite.

Proof of Proposition 2

Proof. For part (i), note that at each vertex θi = 1 for some i ∈ N and θj = 0 ∀j 6= i.
Hence the values at the vertices are ν(0, ..., 0, 1, 0, ..., 0) = 1 · f(Ω). The only points
that can obtain the global maximum of f(Ω) are the vertices of the simplex. To see
this, consider any point θ̃ = (θ′1, ..., θ′N) such that ν(θ̃) = ∑

j θ
′
jf(θ′jΩ) = 1. Then

f(θ′jΩ) ≥ f(Ω) for some j ∈ N . Since f is increasing, this requires θ′j = 1, hence the
point θ̃ is a vertex.

For part (ii), note
ν(Θ) ≡

∑
t

θtf(θtΩ).

We can replace θN = 1−∑N−1
i=1 θt. Then we have

ν(Θ|Θ ∈ ∆N) ≡ θNf(θNΩ) +
N−1∑
t=1

θtf(θtΩ).

Taking the derivative w.r.t θt, for t = 1, ..., N − 1 we get

∂ν

∂θt
= −f(θNΩ)− θNΩf ′(θNΩ) + f(θtΩ) + θtΩf ′(θtΩ).

For an interior maximum, we need ∇ν = 0, so we require

f(θNΩ) + θNΩf ′(θNΩ) = f(θtΩ) + θtΩf ′(θtΩ), for all t = 1, ..., N − 1.

Clearly θt = 1
N

is a solution to this equation.
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Furthermore, the second order condition is negative if and only if 2 < rf
(

Ω
N

)
, which

yields part (ii).

For part (iii), suppose for the sake of a contradiction that there exists a local maximum
Θ = (θ1, ..., θN) 6= (1/N, ..., 1/N). Then there exist some indices i, j such that θ<θj.
W.l.o.g. we can relabel θt = θi and θN = θj. From the FOC, and using that f is
increasing, we get:

0 < f(θNΩ)− f(θtΩ) = −θNΩf ′(θNΩ) + θtΩf ′(θtΩ).

Hence θtΩf ′(θtΩ) − θNΩf ′(θNΩ) > 0. Plugging this in the second order condition we
get:

Ω{2[θtf ′(θtΩ)− θNf ′(θNΩ)]− θtf ′(θtΩ)rf (θtΩ)− θNf ′(θNΩ)rf (θNΩ)]} > 0,

which is a contradiction. So any belief Θ that satisfies the FOC but where θt < θN

cannot be a maximum, which yields part (iii).

Proof of Lemma 3

Proof. First, recall that ν(·) satisfy ν(θ) = ν(1−θ), it is convex at θ = 0, and θ = 0.5 is
the unique local maximum. Therefore, there exists a unique θ̃ ∈ [0, 0.5] such that ν(·)
is convex in [0, θ̃] and concave in [θ̃, 0.5]. For any Ω, the inflection point as an implicit
function of Ω defined by

g(Ω|θ̃(Ω)) = 0.

Taking derivative of this expression with respect to Ω we get:

∂g(Ω|θ̃(Ω))
∂Ω + ∂g(Ω|θ̃(Ω))

θ̃

dθ̃(Ω)
dΩ = 0.

Thus,
dθ̃(Ω)
dΩ =

−∂g(Ω|θ̃(Ω))
∂Ω

∂g(Ω|θ̃(Ω))
θ̃

.

We can write g = h(Ωθ) + h(Ω(1− θ)). Then, the derivative of g with respect to Ω is
θh′(Ωθ)+(1−θ)h′(Ω(1−θ)) and the derivative with respect to θ is Ω[h′(Ωθ)−h′(Ω(1−
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θ))]. Therefore,

dθ̃(Ω)
dΩ = −[θh′(Ωθ) + (1− θ)h′(Ω(1− θ))]

Ω[h′(Ωθ)− h′(Ω(1− θ))] = −h′(Ω(1− θ))
Ω[h′(Ωθ)− h′(Ω(1− θ))] −

θ

Ω .

Hence, the derivative if, evaluating at the inflection point we have, negative if

h′(Ω(1− θ))
h′(Ωθ)− h′(Ω(1− θ)) + θ > 0

which is the condition in the lemma. If h is increasing and concave, this condition
clearly holds.

Proof of Proposition 3

Proof. The proof follows from the convexity of PS in autorefL-posteriors, the charac-
terization of the objective function in Proposition 2, and the standard concavification
argument.

1. A maximally informative signal obtains when the set of posteriors is rich enough, so
the then the global maxima of ν(Θ) over PS is below the concave closure of ν(Θ) over
the region PS, because δPS includes points towards the vertices of the simplex, so the
concave closure of ν(Θ) over PS corresponds to the plane that connects the boundary
of PS.

Then the optimal signal s∗ only induces posteriors in ∂PS, so for any arbitrary prior p ∈
PS, Bayesian consistency of the posteriors determines the distribution over posteriors
on ∂PS.

2. A partially informative signal obtains when the set of posteriors is limited, so the
concave closure of ν(Θ) over PS coincides with ν(Θ) for some values (near the center
of the simplex ∆N).

3. An uninformative signal obtains when the set of posteriors is concentrated towards
the center of the simplex ∆N , where ν is concave, so the concavification of ν(·) over PS
and ν(·) itself coincide.
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B Appendix: Technology-specific Prizes

In this section we study the possibility of choosing technology-specific prizes, {Vt}t∈N ,
which naturally changes the allocation of effort across technologies. There are two
important differences with our baseline analysis. First, the parameter Ω in the baseline
model is now technology-specific, Ωt =

(
M−1
M

)
Vt. This means that the total effort in

equilibrium towards technology t is x∗t = θtΩt. Second, the prize is awarded only to the
ex-post best technology, which means that Vt is paid with probability θt.

Suppose the technology-specific prizes are announced before the realization of the prin-
cipal’s experiment. That is, the prizes are chosen ex-ante and are independent of the
posterior beliefs. Then, the principal’s payoff is

ν(Θ;V1, ..., VN) ≡
N∑
t=1

θt[f(θtΩt)− Vt]

Figure 9 shows this function for f(x) =
√
x and for f(x) = 1 − exp(−8x). Note that

the asymmetry of technology-specific prizes invalidates some properties of ν used in the
main analysis. For instance, the global maximum is not attained at all the extrema of
the simplex: it is attained at the technology t that maximizes f(Ωt)− Vt. We also lose
symmetry with respect to the center of the simplex.
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Figure 9: Left Panel: f(x) =
√
x, technology-specific prizes V1 = 0.5 and V2 = 0.3. Right

Panel: f(x) = 1− exp−8x, technology-specific prizes V1 = 0.8 and V2 = 0.85.

Our analysis readily extends to the case with technology-specific prizes: we can compute
the function ν and find its concavification, to study whether or not there are gains from
information disclosure.

Lemma 4. ν(Θ) is concave at Θ = (θ1, ..., θN) ∈ ∆N if and only if
Ωtθtf

′(θtΩt)[2− rf (θtΩt)] + ΩNθNf
′(θN ΩN )[2− rf (θN ΩN )] < 0, for all t = 1, ..., N − 1. (12)
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where rf (x) ≡ −xf
′′(x)

f ′(x) is the relative risk aversion coefficient associated with f(·).

These result is analogous to Lemma 2, except that different prizes in combination
with beliefs determine the concavity of ν(·). However the asymmetry introduced by
technology-specific prizes makes the taxonomy of information policies more cumbersome
to describe. Figure 10 shows three cases in which the principal benefits from information
disclosure when there are technology-specific prizes.
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Figure 10: Value of information disclosure for three particular combinations of technology-
specific prizes for f(x) = 1 − exp−8x when the prior is θ = 0.4 and the most informative
experiment is generated by α = 0.75 in Example 1. Left Panel: V1 = 0.6 and V2 = 0.65. Left
Panel: V1 = 0.7 and V2 = 0.75. Right Panel: V1 = 0.8 and V2 = 0.85.

Next we ask: what is the optimal combination of prizes and information disclosure?

Figure 11: The value of information disclosure for different combinations of technology-
specific prizes for f(x) = 1 − exp−8x, when the prior is θ = 0.4 and the most informative
experiment is generated by α = 0.75 in Example 1.
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Figure 11 shows the principal’s payoff for different combinations of technology-specific
prizes (V1, V2), when f(x) = 1 − exp−8x, when the prior is θ = 0.4 and the most
informative experiment is generated by α = 0.75 in Example 1. In this case, the
optimal prize using the optimal information disclosure is V1 = V2 = 0.32, whereas the
optimal prize without information disclosure is V1 = 0.35 < V2 = 0.37.
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